• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Predicting Unprecedented Dengue Outbreak Using Imported Cases and Climatic Factors in Guangzhou, 2014

    Thumbnail
    View/Open
    SangPUB251.PDF (1.063Mb)
    Author
    Sang, Shaowei
    Gu, Shaohua
    Bi, Peng
    Yang, Weizhong
    Yang, Zhicong
    Xu, Lei
    Yang, Jun
    Liu, Xiaobo
    Jiang, Tong
    Wu, Haixia
    Chu, Cordia
    Liu, Qiyong
    Year published
    2015
    Metadata
    Show full item record
    Abstract
    Introduction: Dengue is endemic in more than 100 countries, mainly in tropical and subtropical regions, and the incidence has increased 30-fold in the past 50 years. The situation of dengue in China has become more and more severe, with an unprecedented dengue outbreak hitting south China in 2014. Building a dengue early warning system is therefore urgent and necessary for timely and effective response. Methodology and Principal Findings: In the study we developed a time series Poisson multivariate regression model using imported dengue cases, local minimum temperature and accumulative precipitation to predict the dengue occurrence in four districts of Guangzhou, China. The time series data were decomposed into seasonal, trend and remainder components using a seasonal-trend decomposition procedure based on loess (STL). The time lag of climatic factors included in the model was chosen based on Spearman correlation analysis. Autocorrelation, seasonality and long-term trend were controlled in the model. A best model was selected and validated using Generalized Cross Validation (GCV) score and residual test. The data from March 2006 to December 2012 were used to develop the model while the data from January 2013 to September 2014 were employed to validate the model. Time series Poisson model showed that imported cases in the previous month, minimum temperature in the previous month and accumulative precipitation with three month lags could project the dengue outbreaks occurred in 2013 and 2014 after controlling the autocorrelation, seasonality and long-term trend. Conclusions: Together with the sole transmission vector Aedes albopictus, imported cases, monthly minimum temperature and monthly accumulative precipitation may be used to develop a low-cost effective early warning system.
    Journal Title
    PloS Neglected Tropical Diseases
    Volume
    9
    Issue
    5
    DOI
    https://doi.org/10.1371/journal.pntd.0003808
    Copyright Statement
    © 2015 Sang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    Subject
    Biological Sciences not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/100684
    Collection
    • Journal articles

    Footer

    Social media

    • Facebook
    • Twitter
    • YouTube
    • Instagram
    • Linkedin
    First peoples of Australia
    • Aboriginal
    • Torres Strait Islander

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane
    • Australia