Toward modeling locomotion using electromyography informed 3D models: application to cerebral palsy

View/ Open
Author(s)
Sartori, M
Fernandez, JW
Modenese, L
Carty, CP
Barber, LA
Oberhofer, K
Zhang, J
Handsfield, GG
Stott, NS
Besier, TF
Farina, D
Lloyd, DG
Year published
2017
Metadata
Show full item recordAbstract
his position paper proposes a modeling pipeline to develop clinically relevant neuromusculoskeletal models to understand and treat complex neurological disorders. Although applicable to a variety of neurological conditions, we provide direct pipeline applicative examples in the context of cerebral palsy (CP). This paper highlights technologies in: (1) patient-specific segmental rigid body models developed from magnetic resonance imaging for use in inverse kinematics and inverse dynamics pipelines; (2) efficient population-based approaches to derive skeletal models and muscle origins/insertions that are useful for population ...
View more >his position paper proposes a modeling pipeline to develop clinically relevant neuromusculoskeletal models to understand and treat complex neurological disorders. Although applicable to a variety of neurological conditions, we provide direct pipeline applicative examples in the context of cerebral palsy (CP). This paper highlights technologies in: (1) patient-specific segmental rigid body models developed from magnetic resonance imaging for use in inverse kinematics and inverse dynamics pipelines; (2) efficient population-based approaches to derive skeletal models and muscle origins/insertions that are useful for population statistics and consistent creation of continuum models; (3) continuum muscle descriptions to account for complex muscle architecture including spatially varying material properties with muscle wrapping; (4) muscle and tendon properties specific to CP; and (5) neural-based electromyography-informed methods for muscle force prediction. This represents a novel modeling pipeline that couples for the first time electromyography extracted features of disrupted neuromuscular behavior with advanced numerical methods for modeling CP-specific musculoskeletal morphology and function. The translation of such pipeline to the clinical level will provide a new class of biomarkers that objectively describe the neuromusculoskeletal determinants of pathological locomotion and complement current clinical assessment techniques, which often rely on subjective judgment.
View less >
View more >his position paper proposes a modeling pipeline to develop clinically relevant neuromusculoskeletal models to understand and treat complex neurological disorders. Although applicable to a variety of neurological conditions, we provide direct pipeline applicative examples in the context of cerebral palsy (CP). This paper highlights technologies in: (1) patient-specific segmental rigid body models developed from magnetic resonance imaging for use in inverse kinematics and inverse dynamics pipelines; (2) efficient population-based approaches to derive skeletal models and muscle origins/insertions that are useful for population statistics and consistent creation of continuum models; (3) continuum muscle descriptions to account for complex muscle architecture including spatially varying material properties with muscle wrapping; (4) muscle and tendon properties specific to CP; and (5) neural-based electromyography-informed methods for muscle force prediction. This represents a novel modeling pipeline that couples for the first time electromyography extracted features of disrupted neuromuscular behavior with advanced numerical methods for modeling CP-specific musculoskeletal morphology and function. The translation of such pipeline to the clinical level will provide a new class of biomarkers that objectively describe the neuromusculoskeletal determinants of pathological locomotion and complement current clinical assessment techniques, which often rely on subjective judgment.
View less >
Journal Title
Wiley interdisciplinary reviews. Systems biology and medicine
Volume
9
Copyright Statement
© 2017 Wiley Periodicals, Inc. This is the peer reviewed version of the following article: Toward modeling locomotion using electromyography‐informed 3D models: application to cerebral palsy, Wiley Interdisciplinary Reviews: Systems Biology and Medicine, Volume 9, Issue 2, e1368, 2017, which has been published in final form at https://doi.org/10.1002/wsbm.1368. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving (http://olabout.wiley.com/WileyCDA/Section/id-828039.html)
Subject
Biomechanical engineering
Clinical sciences
Biomechanics
Other health sciences