Stochastic feedback control of quantum transport to realize a dynamical ensemble of two nonorthogonal pure states

View/ Open
File version
Accepted Manuscript (AM)
Author(s)
Daryanoosh, Shakib
Wiseman, Howard M
Brandes, Tobias
Griffith University Author(s)
Year published
2016
Metadata
Show full item recordAbstract
A Markovian open quantum system which relaxes to a unique steady state ρss of finite rank can be decomposed into a finite physically realizable ensemble (PRE) of pure states. That is, as shown by R. I. Karasik and H. M. Wiseman [Phys. Rev. Lett. 106, 020406 (2011)], in principle there is a way to monitor the environment so that in the long-time limit the conditional state jumps between a finite number of possible pure states. In this paper we show how to apply this idea to the dynamics of a double quantum dot arising from the feedback control of quantum transport, as previously considered by C. Pöltl, C. Emary, and T. Brandes ...
View more >A Markovian open quantum system which relaxes to a unique steady state ρss of finite rank can be decomposed into a finite physically realizable ensemble (PRE) of pure states. That is, as shown by R. I. Karasik and H. M. Wiseman [Phys. Rev. Lett. 106, 020406 (2011)], in principle there is a way to monitor the environment so that in the long-time limit the conditional state jumps between a finite number of possible pure states. In this paper we show how to apply this idea to the dynamics of a double quantum dot arising from the feedback control of quantum transport, as previously considered by C. Pöltl, C. Emary, and T. Brandes [Phys. Rev. B 84, 085302 (2011)]. Specifically, we consider the limit where the system can be described as a qubit, and show that while the control scheme can always realize a two-state PRE, in the incoherent-tunneling regime there are infinitely many PREs compatible with the dynamics that cannot be so realized. For the two-state PREs that are realized, we calculate the counting statistics and see a clear distinction between the coherent and incoherent regimes.
View less >
View more >A Markovian open quantum system which relaxes to a unique steady state ρss of finite rank can be decomposed into a finite physically realizable ensemble (PRE) of pure states. That is, as shown by R. I. Karasik and H. M. Wiseman [Phys. Rev. Lett. 106, 020406 (2011)], in principle there is a way to monitor the environment so that in the long-time limit the conditional state jumps between a finite number of possible pure states. In this paper we show how to apply this idea to the dynamics of a double quantum dot arising from the feedback control of quantum transport, as previously considered by C. Pöltl, C. Emary, and T. Brandes [Phys. Rev. B 84, 085302 (2011)]. Specifically, we consider the limit where the system can be described as a qubit, and show that while the control scheme can always realize a two-state PRE, in the incoherent-tunneling regime there are infinitely many PREs compatible with the dynamics that cannot be so realized. For the two-state PREs that are realized, we calculate the counting statistics and see a clear distinction between the coherent and incoherent regimes.
View less >
Journal Title
Physical Review B
Volume
93
Copyright Statement
© 2016 American Physical Society. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
Subject
Quantum information, computation and communication