• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Stochastic feedback control of quantum transport to realize a dynamical ensemble of two nonorthogonal pure states

    Thumbnail
    View/Open
    WisemanPUB2755.pdf (1.039Mb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Daryanoosh, Shakib
    Wiseman, Howard M
    Brandes, Tobias
    Griffith University Author(s)
    Wiseman, Howard M.
    Year published
    2016
    Metadata
    Show full item record
    Abstract
    A Markovian open quantum system which relaxes to a unique steady state ρss of finite rank can be decomposed into a finite physically realizable ensemble (PRE) of pure states. That is, as shown by R. I. Karasik and H. M. Wiseman [Phys. Rev. Lett. 106, 020406 (2011)], in principle there is a way to monitor the environment so that in the long-time limit the conditional state jumps between a finite number of possible pure states. In this paper we show how to apply this idea to the dynamics of a double quantum dot arising from the feedback control of quantum transport, as previously considered by C. Pöltl, C. Emary, and T. Brandes ...
    View more >
    A Markovian open quantum system which relaxes to a unique steady state ρss of finite rank can be decomposed into a finite physically realizable ensemble (PRE) of pure states. That is, as shown by R. I. Karasik and H. M. Wiseman [Phys. Rev. Lett. 106, 020406 (2011)], in principle there is a way to monitor the environment so that in the long-time limit the conditional state jumps between a finite number of possible pure states. In this paper we show how to apply this idea to the dynamics of a double quantum dot arising from the feedback control of quantum transport, as previously considered by C. Pöltl, C. Emary, and T. Brandes [Phys. Rev. B 84, 085302 (2011)]. Specifically, we consider the limit where the system can be described as a qubit, and show that while the control scheme can always realize a two-state PRE, in the incoherent-tunneling regime there are infinitely many PREs compatible with the dynamics that cannot be so realized. For the two-state PREs that are realized, we calculate the counting statistics and see a clear distinction between the coherent and incoherent regimes.
    View less >
    Journal Title
    Physical Review B
    Volume
    93
    DOI
    https://doi.org/10.1103/PhysRevB.93.085127
    Copyright Statement
    © 2016 American Physical Society. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
    Subject
    Quantum information, computation and communication
    Publication URI
    http://hdl.handle.net/10072/100908
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander