• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Altered thermoregulatory responses in heart failure patients exercising in the heat

    Thumbnail
    View/Open
    BalmainPUB2792.pdf (186.6Kb)
    File version
    Version of Record (VoR)
    Author(s)
    Balmain, BN
    Jay, O
    Sabapathy, S
    Royston, D
    Stewart, GM
    Jayasinghe, R
    Morris, NR
    Griffith University Author(s)
    Sabapathy, Surendran
    Morris, Norman
    Jayasinghe, Rohan
    Stewart, Glenn
    Royston, Danielle
    Balmain, Bryce N.
    Year published
    2016
    Metadata
    Show full item record
    Abstract
    Heart failure (HF) patients appear to exhibit impaired thermoregulatory capacity during passive heating, as evidenced by diminished vascular conductance. Although some preliminary studies have described the thermoregulatory response to passive heating in HF, responses during exercise in the heat remain to be described. Therefore, the aim of this study was to compare thermoregulatory responses in HF and controls (CON) during exercise in the heat. Ten HF (NYHA classes I–II) and eight CON were included. Core temperature (Tc), skin temperature (Tsk), and cutaneous vascular conductance (CVC) were assessed at rest and during 1 h ...
    View more >
    Heart failure (HF) patients appear to exhibit impaired thermoregulatory capacity during passive heating, as evidenced by diminished vascular conductance. Although some preliminary studies have described the thermoregulatory response to passive heating in HF, responses during exercise in the heat remain to be described. Therefore, the aim of this study was to compare thermoregulatory responses in HF and controls (CON) during exercise in the heat. Ten HF (NYHA classes I–II) and eight CON were included. Core temperature (Tc), skin temperature (Tsk), and cutaneous vascular conductance (CVC) were assessed at rest and during 1 h of exercise at 60% of maximal oxygen uptake. Metabolic heat production (Hprod) and the evaporative requirements for heat balance (Ereq) were also calculated. Whole‐body sweat rate was determined from pre–post nude body mass corrected for fluid intake. While Hprod (HF: 3.9 ± 0.9; CON: 6.4 ± 1.5 W/kg) and Ereq (HF: 3.3 ± 0.9; CON: 5.6 ± 1.4 W/kg) were lower (P < 0.01) for HF compared to CON, both groups demonstrated a similar rise in Tc (HF: 0.9 ± 0.4; CON: 1.0 ± 0.3°C). Despite this similar rise in Tc, Tsk (HF: 1.6 ± 0.7; CON: 2.7 ± 1.2°C), and the elevation in CVC (HF: 1.4 ± 1.0; CON: 3.0 ± 1.2 au/mmHg) was lower (P < 0.05) in HF compared to CON. Additionally, whole‐body sweat rate (HF: 0.36 ± 0.15; CON: 0.81 ± 0.39 L/h) was lower (P = 0.02) in HF compared to CON. Patients with HF appear to be limited in their ability to manage a thermal load and distribute heat content to the body surface (i.e., skin), secondary to impaired circulation to the periphery.
    View less >
    Journal Title
    Physiological Reports
    Volume
    4
    Issue
    21
    DOI
    https://doi.org/10.14814/phy2.13022
    Copyright Statement
    © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
    Subject
    Exercise Physiology
    Physiology
    Clinical Sciences
    Medical Physiology
    Publication URI
    http://hdl.handle.net/10072/100943
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander