• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Metallic Ni nanocatalyst in situ formed from a metal-organic-framework by mechanochemical reaction for hydrogen storage in magnesium

    Author(s)
    Jia, Yi
    Sun, Chenghua
    Peng, Ye
    Fang, Wenqi
    Yan, Xuecheng
    Yang, Dongjiang
    Zou, Jin
    Mao, Samuel S
    Yao, Xiangdong
    Griffith University Author(s)
    Yan, Xuecheng
    Jia, Yi
    Year published
    2015
    Metadata
    Show full item record
    Abstract
    The facile and scalable fabrication of ultrafine (<5 nm) nanoparticles (NPs) as effective catalysts is the key for enhancing the kinetics of most hydrogen storage materials (HSMs). The direct fabrication of ultrafine NPs in HSMs is obviously a challenge because of the inevitable NPs agglomeration during the thermo-reduction. Herein, we report a mechanochemical-force-driven procedure for the one-step preparation of Ni NPs (2–3 nm) in a MgH2 matrix, which capitalizes on the in situ bottom-up reduction of Ni-MOF-74 in the presence of MgH2 as a reducing and sacrificing agent at room temperature. Both theoretical calculations and ...
    View more >
    The facile and scalable fabrication of ultrafine (<5 nm) nanoparticles (NPs) as effective catalysts is the key for enhancing the kinetics of most hydrogen storage materials (HSMs). The direct fabrication of ultrafine NPs in HSMs is obviously a challenge because of the inevitable NPs agglomeration during the thermo-reduction. Herein, we report a mechanochemical-force-driven procedure for the one-step preparation of Ni NPs (2–3 nm) in a MgH2 matrix, which capitalizes on the in situ bottom-up reduction of Ni-MOF-74 in the presence of MgH2 as a reducing and sacrificing agent at room temperature. Both theoretical calculations and experimental investigations show that ultrafine Ni NPs are much more effective on catalytic hydrogenation/dehydrogenation in Mg due to the size effect. These findings may facilitate the fabrication of other catalyzed HSMs using different MOFs as catalyst precursors.
    View less >
    Journal Title
    Journal of Materials Chemistry A: Materials for Energy and Sustainability
    Volume
    3
    Issue
    16
    DOI
    https://doi.org/10.1039/c5ta00278h
    Subject
    Macromolecular and materials chemistry
    Macromolecular and materials chemistry not elsewhere classified
    Materials engineering
    Publication URI
    http://hdl.handle.net/10072/101053
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander