Anaerobic energy production during sprint paddling in junior competitive and recreational surfers

View/ Open
File version
Accepted Manuscript (AM)
Author(s)
Minahan, Clare L
Pirera, Danielle J
Sheehan, Beth
MacDonald, Luke
Bellinger, Phillip M
Year published
2016
Metadata
Show full item recordAbstract
This study compared determinants of a 30-s all-out paddling effort (30-s sprint-paddling test) between junior surfboard riders (surfers) of varying ability. Eight competitive (COMP) and 8 recreational (REC) junior male surfers performed a 30-s sprint-paddling test for the determination of peak sprint power and accumulated O2 deficit. Surfers also performed an incremental-paddling test for the determination of the O2 uptake–power output relationship that was subsequently used to calculate the accumulated O2 deficit for the 30-s sprint-paddling test. During the 30-s sprint-paddling test, peak sprint power (404 ± 98 vs 292 ± ...
View more >This study compared determinants of a 30-s all-out paddling effort (30-s sprint-paddling test) between junior surfboard riders (surfers) of varying ability. Eight competitive (COMP) and 8 recreational (REC) junior male surfers performed a 30-s sprint-paddling test for the determination of peak sprint power and accumulated O2 deficit. Surfers also performed an incremental-paddling test for the determination of the O2 uptake–power output relationship that was subsequently used to calculate the accumulated O2 deficit for the 30-s sprint-paddling test. During the 30-s sprint-paddling test, peak sprint power (404 ± 98 vs 292 ± 56 W, respectively, P = .01) and the accumulated O2 deficit (1.60 ± 0.31 vs 1.14 ± 0.38 L, respectively, P = .02) were greater in COMP than in REC surfers, whereas peak O2 uptake measured during the incremental-paddling test was not different (2.7 ± 0.1 vs 2.5 ± 0.2 L/min, respectively, P = .11). The higher peak sprint power and larger accumulated O2 deficit observed in COMP than in REC surfers during a 30-s sprint paddling test suggest that surfing promotes development of the anaerobic energy systems. Furthermore, peak sprint power determined during 30 s of sprint paddling may be considered a sensitive measure of surfing ability or experience in junior male surfers.
View less >
View more >This study compared determinants of a 30-s all-out paddling effort (30-s sprint-paddling test) between junior surfboard riders (surfers) of varying ability. Eight competitive (COMP) and 8 recreational (REC) junior male surfers performed a 30-s sprint-paddling test for the determination of peak sprint power and accumulated O2 deficit. Surfers also performed an incremental-paddling test for the determination of the O2 uptake–power output relationship that was subsequently used to calculate the accumulated O2 deficit for the 30-s sprint-paddling test. During the 30-s sprint-paddling test, peak sprint power (404 ± 98 vs 292 ± 56 W, respectively, P = .01) and the accumulated O2 deficit (1.60 ± 0.31 vs 1.14 ± 0.38 L, respectively, P = .02) were greater in COMP than in REC surfers, whereas peak O2 uptake measured during the incremental-paddling test was not different (2.7 ± 0.1 vs 2.5 ± 0.2 L/min, respectively, P = .11). The higher peak sprint power and larger accumulated O2 deficit observed in COMP than in REC surfers during a 30-s sprint paddling test suggest that surfing promotes development of the anaerobic energy systems. Furthermore, peak sprint power determined during 30 s of sprint paddling may be considered a sensitive measure of surfing ability or experience in junior male surfers.
View less >
Journal Title
International Journal of Sports Physiology and Performance
Volume
11
Issue
6
Copyright Statement
© 2016 Human Kinetics. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal website for access to the definitive, published version.
Subject
Sports science and exercise
Sports science and exercise not elsewhere classified
Medical physiology
Psychology