Factors affecting the f× Q product of 3C-SiC microstrings: What is the upper limit for sensitivity?

View/ Open
Author(s)
Ranjbar Kermany, Atieh
Bennett, James S.
Brawley, George A.
Bowen, Warwick P.
Iacopi, Francesca
Year published
2016
Metadata
Show full item recordAbstract
The fn × Q (Hz) is a crucial sensitivity parameter for micro-electro-mechanical sensing. We have recently shown a fn × Q product of ∼1012 Hz for microstrings made of cubic silicon carbide on silicon, establishing a new state-of-the-art and opening new frontiers for mass sensing applications. In this work, we analyse the main parameters influencing the frequency and quality factor of silicon carbide microstrings (material properties, microstring geometry, clamping condition, and environmental pressure) and investigate the potential for approaching the theoretical upper limit. We indicate that our previous result is only about ...
View more >The fn × Q (Hz) is a crucial sensitivity parameter for micro-electro-mechanical sensing. We have recently shown a fn × Q product of ∼1012 Hz for microstrings made of cubic silicon carbide on silicon, establishing a new state-of-the-art and opening new frontiers for mass sensing applications. In this work, we analyse the main parameters influencing the frequency and quality factor of silicon carbide microstrings (material properties, microstring geometry, clamping condition, and environmental pressure) and investigate the potential for approaching the theoretical upper limit. We indicate that our previous result is only about a factor 2 lower than the thermoelastic dissipation limit. For fully reaching this upper limit, a substantial reduction of the defects in the silicon carbide thin film would be required, while maintaining a high residual tensile stress in the perfect-clamped strings.
View less >
View more >The fn × Q (Hz) is a crucial sensitivity parameter for micro-electro-mechanical sensing. We have recently shown a fn × Q product of ∼1012 Hz for microstrings made of cubic silicon carbide on silicon, establishing a new state-of-the-art and opening new frontiers for mass sensing applications. In this work, we analyse the main parameters influencing the frequency and quality factor of silicon carbide microstrings (material properties, microstring geometry, clamping condition, and environmental pressure) and investigate the potential for approaching the theoretical upper limit. We indicate that our previous result is only about a factor 2 lower than the thermoelastic dissipation limit. For fully reaching this upper limit, a substantial reduction of the defects in the silicon carbide thin film would be required, while maintaining a high residual tensile stress in the perfect-clamped strings.
View less >
Journal Title
Journal of Applied Physics
Volume
119
Copyright Statement
© 2017 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in [citation of published article] and may be found at http://dx.doi.org/10.1063/1.4941274.
Subject
Physical Sciences not elsewhere classified
Mathematical Sciences
Physical Sciences
Engineering