Show simple item record

dc.contributor.authorNeale, Peta A
dc.contributor.authorJaemting, Asa K
dc.contributor.authorO'Malley, Elissa
dc.contributor.authorHerrmann, Jan
dc.contributor.authorEscher, Beate I
dc.date.accessioned2017-05-22T00:28:32Z
dc.date.available2017-05-22T00:28:32Z
dc.date.issued2015
dc.identifier.issn2051-8153
dc.identifier.doi10.1039/c4en00161c
dc.identifier.urihttp://hdl.handle.net/10072/101286
dc.description.abstractThe properties of engineered nanomaterials (ENMs), such as their small size and increased reactivity, enable their use in a wide range of products; however, these attributes may also pose an environmental hazard. Wastewater effluent is expected to be a significant source of ENMs to the aquatic environment. Little is known about the behaviour and effect of ENMs in this complex matrix. The aim of this study was to assess the effect of titanium dioxide (TiO2) and zinc oxide (ZnO) ENMs on microalgae Pseudokirchneriella subcapitata in wastewater effluent and compare with more commonly tested matrices, specifically Talaquil growth media and Suwannee River humic acid. To better understand the toxicity results, ENM concentration, size and streaming potential in the different experimental matrices were assessed. The different media types had a significant influence on TiO2 behaviour, with TiO2 settling out of solution within the first 24 hours in wastewater. However, as TiO2 was not toxic to algae at the studied concentration, no difference in effect was observed between media, humic acid and wastewater. In contrast, media types had less of an influence on ZnO behaviour, with growth inhibition observed in all three media types at 72 hours, although the presence of organic matter delayed inhibition slightly. The results demonstrate that organic matter properties can have a significant influence on ENM behaviour, and while this did not translate into an effect on algae in the current study, it is still important to consider ENM behaviour and fate when working in different matrices.
dc.description.peerreviewedYes
dc.languageEnglish
dc.language.isoeng
dc.publisherRoyal Society of Chemistry
dc.relation.ispartofpagefrom86
dc.relation.ispartofpageto93
dc.relation.ispartofissue1
dc.relation.ispartofjournalEnvironmental Science: Nano
dc.relation.ispartofvolume2
dc.subject.fieldofresearchOther chemical sciences
dc.subject.fieldofresearchEnvironmental engineering
dc.subject.fieldofresearchEnvironmental biotechnology
dc.subject.fieldofresearchNanotoxicology, health and safety
dc.subject.fieldofresearchcode3499
dc.subject.fieldofresearchcode4011
dc.subject.fieldofresearchcode4103
dc.subject.fieldofresearchcode320605
dc.titleBehaviour of titanium dioxide and zinc oxide nanoparticles in the presence of wastewater-derived organic matter and implications for algal toxicity
dc.typeJournal article
dc.type.descriptionC1 - Articles
dc.type.codeC - Journal Articles
dc.description.versionAccepted Manuscript (AM)
gro.facultyGriffith Sciences, Griffith School of Environment
gro.rights.copyright© 2015 Royal Society of Chemistry. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal website for access to the definitive, published version.
gro.hasfulltextFull Text
gro.griffith.authorNeale, Peta A.


Files in this item

This item appears in the following Collection(s)

  • Journal articles
    Contains articles published by Griffith authors in scholarly journals.

Show simple item record