DL-lite ontology revision based on an alternative semantic characterization

View/ Open
File version
Accepted Manuscript (AM)
Author(s)
Wang, Zhe
Wang, Kewen
Topor, Rodney
Year published
2015
Metadata
Show full item recordAbstract
Ontology engineering and maintenance require (semi-)automated ontology change operations. Intensive research has been conducted on TBox and ABox changes in description logics (DLs), and various change operators have been proposed in the literature. Existing operators largely fall into two categories: syntax-based and model-based. While each approach has its advantages and disadvantages, an important topic that has rarely been explored is how to achieve a balance between syntax-based and model-based approaches. Also, most existing operators are specially designed for either TBox change or ABox change, and cannot handle the ...
View more >Ontology engineering and maintenance require (semi-)automated ontology change operations. Intensive research has been conducted on TBox and ABox changes in description logics (DLs), and various change operators have been proposed in the literature. Existing operators largely fall into two categories: syntax-based and model-based. While each approach has its advantages and disadvantages, an important topic that has rarely been explored is how to achieve a balance between syntax-based and model-based approaches. Also, most existing operators are specially designed for either TBox change or ABox change, and cannot handle the general ontology revision task—given a DL knowledge base (KB, a pair consisting of a TBox and an ABox), how to revise it by a set of TBox and ABox axioms (i.e., a new DL KB). In this article, we introduce an alternative structure for DL-Lite, called a featured interpretation, and show that featured models provide a finite and tight characterization to the classical semantics of DL-Lite. A key issue for defining a change operator is the so-called expressibility, that is, whether a set of models (or featured models here) is axiomatizable in DLs. It is indeed much easier to obtain expressibility results for featured models than for classical DL models. As a result, the new semantics determined by featured models provides a method for defining and studying various changes of DL-Lite KBs that involve both TBoxes and ABoxes. To demonstrate the usefulness of the new semantic characterization in ontology change, we define two revision operators for DL-Lite KBs using featured models and study their properties. In particular, we show that our two operators both satisfy AGM postulates. We show that the complexity of our revisions is ΠP2-complete, that is, on the same level as major revision operators in propositional logic, which further justifies the feasibility of our revision approach for DL-Lite. Also, we develop algorithms for these DL-Lite revisions.
View less >
View more >Ontology engineering and maintenance require (semi-)automated ontology change operations. Intensive research has been conducted on TBox and ABox changes in description logics (DLs), and various change operators have been proposed in the literature. Existing operators largely fall into two categories: syntax-based and model-based. While each approach has its advantages and disadvantages, an important topic that has rarely been explored is how to achieve a balance between syntax-based and model-based approaches. Also, most existing operators are specially designed for either TBox change or ABox change, and cannot handle the general ontology revision task—given a DL knowledge base (KB, a pair consisting of a TBox and an ABox), how to revise it by a set of TBox and ABox axioms (i.e., a new DL KB). In this article, we introduce an alternative structure for DL-Lite, called a featured interpretation, and show that featured models provide a finite and tight characterization to the classical semantics of DL-Lite. A key issue for defining a change operator is the so-called expressibility, that is, whether a set of models (or featured models here) is axiomatizable in DLs. It is indeed much easier to obtain expressibility results for featured models than for classical DL models. As a result, the new semantics determined by featured models provides a method for defining and studying various changes of DL-Lite KBs that involve both TBoxes and ABoxes. To demonstrate the usefulness of the new semantic characterization in ontology change, we define two revision operators for DL-Lite KBs using featured models and study their properties. In particular, we show that our two operators both satisfy AGM postulates. We show that the complexity of our revisions is ΠP2-complete, that is, on the same level as major revision operators in propositional logic, which further justifies the feasibility of our revision approach for DL-Lite. Also, we develop algorithms for these DL-Lite revisions.
View less >
Journal Title
ACM Transactions on Computational Logic
Volume
16
Issue
4
Copyright Statement
© ACM, 2015. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, ISBN: 978-1-4503-2758-9, 10.1145/2723372.2723731
Subject
Pure mathematics
Artificial intelligence not elsewhere classified
Theory of computation