• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • A fluorescent chitosan hydrogel detection platform for the sensitive and selective determination of trace mercury(II) in water

    Thumbnail
    View/Open
    GengPUB521.pdf (554.7Kb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Geng, Zhigang
    Zhang, Haimin
    Xiong, Qizhong
    Zhang, Yunxia
    Zhao, Huijun
    Wang, Guozhong
    Griffith University Author(s)
    Zhao, Huijun
    Year published
    2015
    Metadata
    Show full item record
    Abstract
    In this work, a three-dimensional (3D) chitosan hydrogel with superior fluorescence properties was successfully fabricated by modifying chitosan fibers with glutaric dialdehyde (GD) via a simple cross-linking approach. The resulting three-dimensional fluorescent chitosan hydrogel (3D-FCH) with hydrophilic properties exhibited a strong blue fluorescence emission at an excitation wavelength of 337 nm. The fluorescence mechanism of the as-synthesized 3D-FCH was investigated and proposed in detail using X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR) techniques. As a solid-phase fluorescent ...
    View more >
    In this work, a three-dimensional (3D) chitosan hydrogel with superior fluorescence properties was successfully fabricated by modifying chitosan fibers with glutaric dialdehyde (GD) via a simple cross-linking approach. The resulting three-dimensional fluorescent chitosan hydrogel (3D-FCH) with hydrophilic properties exhibited a strong blue fluorescence emission at an excitation wavelength of 337 nm. The fluorescence mechanism of the as-synthesized 3D-FCH was investigated and proposed in detail using X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR) techniques. As a solid-phase fluorescent probe, the 3D-FCH was used to selectively and sensitively determine mercury(II) (Hg2+) ions in aqueous media. The results demonstrated that a prominent fluorescence quenching at 401 nm was observed in the presence of Hg2+ with a linear response range of 5.0–50 nM and an estimated limit of detection of 0.9 nM. The fluorescence quenching mechanism could be ascribed to the strong complexation between Hg2+ and the GD fluorophore with a conjugate structure. Moreover, the porous structure of the chitosan hydrogel and the high adsorption capacity of the chitosan fibers in the hydrogel could be very favorable for the rapid fluorescence determination of Hg2+. This work may pave a new way to develop low-cost fluorescent chitosan hydrogels as solid-phase fluorescence determination platforms to replace traditional liquid-phase fluorophores for application in the fluorescence detection of heavy metal ions.
    View less >
    Journal Title
    Journal of Materials Chemistry A
    Volume
    3
    Issue
    38
    DOI
    https://doi.org/10.1039/c5ta05610a
    Copyright Statement
    © 2015 Royal Society of Chemistry. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal website for access to the definitive, published version.
    Subject
    Macromolecular and materials chemistry
    Macromolecular and materials chemistry not elsewhere classified
    Materials engineering
    Publication URI
    http://hdl.handle.net/10072/101457
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander