Improved conductivity of NdFeO3 through partial substitution of Nd by Ca: A theoretical study

View/ Open
File version
Accepted Manuscript (AM)
Author(s)
Wang, You
Wang, Yun
Ren, Wei
Liu, Porun
Zhao, Huijun
Chen, Jun
Deng, Jinxia
Xing, Xianran
Year published
2015
Metadata
Show full item recordAbstract
NdFeO3 is an important candidate material for gas sensors and intermediate-temperature solid oxide fuel cells (IT-SOFC). However, its low conductivity prohibits its applications. In this study, we report that the doping of Ca by partially replacing Nd can effectively increase its conductivity. Through the electronic structure analysis of Nd1−xCaxFeO3 (x = 0.00, 0.25, 0.50, 0.75 or 1.00) based on the first-principles density functional theory calculations, it is found that the hole states introduced by Ca substitution appear just above the Fermi level, which implies a high mobility of electrons/holes along the Fe–O–Fe bonding ...
View more >NdFeO3 is an important candidate material for gas sensors and intermediate-temperature solid oxide fuel cells (IT-SOFC). However, its low conductivity prohibits its applications. In this study, we report that the doping of Ca by partially replacing Nd can effectively increase its conductivity. Through the electronic structure analysis of Nd1−xCaxFeO3 (x = 0.00, 0.25, 0.50, 0.75 or 1.00) based on the first-principles density functional theory calculations, it is found that the hole states introduced by Ca substitution appear just above the Fermi level, which implies a high mobility of electrons/holes along the Fe–O–Fe bonding network. Specifically, it becomes easier to form O vacancies after Ca doping. Since the diffusion of O anions occurs through a vacancy hopping mechanism, the ion conductivity is also improved. These findings help us to gain an in-depth understanding of the colossally increased conductivity of Ca doped NdFeO3 and turn the electronic conduction for its practical application in gas sensors and IT-SOFC.
View less >
View more >NdFeO3 is an important candidate material for gas sensors and intermediate-temperature solid oxide fuel cells (IT-SOFC). However, its low conductivity prohibits its applications. In this study, we report that the doping of Ca by partially replacing Nd can effectively increase its conductivity. Through the electronic structure analysis of Nd1−xCaxFeO3 (x = 0.00, 0.25, 0.50, 0.75 or 1.00) based on the first-principles density functional theory calculations, it is found that the hole states introduced by Ca substitution appear just above the Fermi level, which implies a high mobility of electrons/holes along the Fe–O–Fe bonding network. Specifically, it becomes easier to form O vacancies after Ca doping. Since the diffusion of O anions occurs through a vacancy hopping mechanism, the ion conductivity is also improved. These findings help us to gain an in-depth understanding of the colossally increased conductivity of Ca doped NdFeO3 and turn the electronic conduction for its practical application in gas sensors and IT-SOFC.
View less >
Journal Title
Physical Chemistry Chemical Physics
Volume
17
Issue
43
Copyright Statement
© 2015 Royal Society of Chemistry. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal website for access to the definitive, published version.
Subject
Physical sciences
Chemical sciences
Macromolecular and materials chemistry not elsewhere classified
Engineering