A low-cost cementite (Fe3C) nanocrystal@N-doped graphitic carbon electrocatalyst for efficient oxygen reduction

View/ Open
File version
Accepted Manuscript (AM)
Author(s)
Wu, Tianxing
Zhang, Haimin
Zhang, Xian
Zhang, Yunxia
Zhao, Huijun
Wang, Guozhong
Griffith University Author(s)
Year published
2015
Metadata
Show full item recordAbstract
In this work, chitosan whiskers (CWs) were first extracted using low-cost and earth-abundant crab shells as materials by a series of chemical processes, and then assembled into chitosan whisker microspheres (CWMs) via a simple photochemical polymerization approach. Subsequently, a cementite (Fe3C) nanocrystal@N-doped graphitic carbon (Fe3C@NGC) nanocomposite was successfully fabricated by high temperature pyrolysis of CWMs adsorbed with ferric acetylacetonate (Fe(acac)3) at 900 °C. It was found that a suitable growth atmosphere generated inside CWMs during high temperature pyrolysis is critically important to form Fe3C ...
View more >In this work, chitosan whiskers (CWs) were first extracted using low-cost and earth-abundant crab shells as materials by a series of chemical processes, and then assembled into chitosan whisker microspheres (CWMs) via a simple photochemical polymerization approach. Subsequently, a cementite (Fe3C) nanocrystal@N-doped graphitic carbon (Fe3C@NGC) nanocomposite was successfully fabricated by high temperature pyrolysis of CWMs adsorbed with ferric acetylacetonate (Fe(acac)3) at 900 °C. It was found that a suitable growth atmosphere generated inside CWMs during high temperature pyrolysis is critically important to form Fe3C nanocrystal cores, concurrently accompanying a structural transformation from chitosan whiskers to mesoporous graphitic carbon shells with natural nitrogen (N) doping properties, resulting in the formation of a core–shell structure Fe3C@NGC nanocomposite. The resulting samples were evaluated as electrocatalysts for oxygen reduction reaction (ORR). In comparison with sole N-doped graphitic carbon without Fe3C nanocrystals obtained by direct pyrolysis of chitosan whisker microspheres at 900 °C (CWMs-900), Fe3C@NGC showed significantly improved ORR catalytic activity. The tolerance to fuel cell molecules (e.g., methanol) and the durability of Fe3C@NGC are obviously superior to commercial Pt/C catalysts in alkaline media. The high ORR performance of Fe3C@NGC could be due to its large surface area (313.7 m2 g−1), a synergistic role of Fe3C nanocrystals, N doping in graphitic carbon creating more catalytic active sites, and a porous structure of the nanocomposite facilitating mass transfer to efficiently improve the utilization of these catalytic active sites.
View less >
View more >In this work, chitosan whiskers (CWs) were first extracted using low-cost and earth-abundant crab shells as materials by a series of chemical processes, and then assembled into chitosan whisker microspheres (CWMs) via a simple photochemical polymerization approach. Subsequently, a cementite (Fe3C) nanocrystal@N-doped graphitic carbon (Fe3C@NGC) nanocomposite was successfully fabricated by high temperature pyrolysis of CWMs adsorbed with ferric acetylacetonate (Fe(acac)3) at 900 °C. It was found that a suitable growth atmosphere generated inside CWMs during high temperature pyrolysis is critically important to form Fe3C nanocrystal cores, concurrently accompanying a structural transformation from chitosan whiskers to mesoporous graphitic carbon shells with natural nitrogen (N) doping properties, resulting in the formation of a core–shell structure Fe3C@NGC nanocomposite. The resulting samples were evaluated as electrocatalysts for oxygen reduction reaction (ORR). In comparison with sole N-doped graphitic carbon without Fe3C nanocrystals obtained by direct pyrolysis of chitosan whisker microspheres at 900 °C (CWMs-900), Fe3C@NGC showed significantly improved ORR catalytic activity. The tolerance to fuel cell molecules (e.g., methanol) and the durability of Fe3C@NGC are obviously superior to commercial Pt/C catalysts in alkaline media. The high ORR performance of Fe3C@NGC could be due to its large surface area (313.7 m2 g−1), a synergistic role of Fe3C nanocrystals, N doping in graphitic carbon creating more catalytic active sites, and a porous structure of the nanocomposite facilitating mass transfer to efficiently improve the utilization of these catalytic active sites.
View less >
Journal Title
Physical Chemistry Chemical Physics
Volume
17
Issue
41
Copyright Statement
© 2015 Royal Society of Chemistry. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal website for access to the definitive, published version.
Subject
Physical sciences
Chemical sciences
Macromolecular and materials chemistry not elsewhere classified
Engineering