• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • An analytical approximation for dynamic soil response of a porous seabed due to combined wave and current loading

    Author(s)
    Liao, CC
    Jeng, D-S
    Zhang, LL
    Griffith University Author(s)
    Jeng, Dong-Sheng
    Year published
    2015
    Metadata
    Show full item record
    Abstract
    This paper presents a new analytical approximation for wave (current)–induced dynamic soil response. In this study, unlike in previous research projects, full dynamic soil behaviour was considered. The nonlinear waves propagating over an infinite seabed with uniform current were investigated, and the new analytical solution was validated with the previous field observations and laboratory experiments. The effects of currents and wave nonlinearity were examined based on the proposed analytical solution. Finally, a parametric study was carried out to examine the influence of the wave and seabed characteristics on the seabed ...
    View more >
    This paper presents a new analytical approximation for wave (current)–induced dynamic soil response. In this study, unlike in previous research projects, full dynamic soil behaviour was considered. The nonlinear waves propagating over an infinite seabed with uniform current were investigated, and the new analytical solution was validated with the previous field observations and laboratory experiments. The effects of currents and wave nonlinearity were examined based on the proposed analytical solution. Finally, a parametric study was carried out to examine the influence of the wave and seabed characteristics on the seabed response. As the numerical examples demonstrated, the effects of currents on the seabed response are significant only in the top region of the seabed (comprising approximately 10% of the wavelength). Based on parametric study, it is concluded that currents with third-order wave loading and full dynamic soil behaviour cannot always be ignored in the estimation of the wave-induced seabed responses, especially for almost-saturated soil, long-wave periods, and shallow water. A significant difference was also observed in the maximum liquefaction depth between the full dynamic and the consolidation models.
    View less >
    Journal Title
    Journal of Coastal Research
    Volume
    31
    Issue
    5
    DOI
    https://doi.org/10.2112/JCOASTRES-D-13-00120.1
    Subject
    Earth sciences
    Engineering
    Ocean engineering
    Publication URI
    http://hdl.handle.net/10072/101626
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander