The effects of military body armour on trunk and hip kinematics during performance of manual handling tasks

View/ Open
File version
Accepted Manuscript (AM)
Author(s)
Lenton, Gavin
Aisbett, Brad
Neesham-Smith, Daniel
Carvajal, Alvaro
Netto, Kevin
Griffith University Author(s)
Year published
2016
Metadata
Show full item recordAbstract
Musculoskeletal injuries are reported as burdening the military. An identified risk factor for injury is carrying heavy loads; however, soldiers are also required to wear their load as body armour. To investigate the effects of body armour on trunk and hip kinematics during military-specific manual handling tasks, 16 males completed 3 tasks while wearing each of 4 body armour conditions plus a control. Three-dimensional motion analysis captured and quantified all kinematic data. Average trunk flexion for the weightiest armour type was higher compared with control during the carry component of the ammunition box lift (p < 0.001) ...
View more >Musculoskeletal injuries are reported as burdening the military. An identified risk factor for injury is carrying heavy loads; however, soldiers are also required to wear their load as body armour. To investigate the effects of body armour on trunk and hip kinematics during military-specific manual handling tasks, 16 males completed 3 tasks while wearing each of 4 body armour conditions plus a control. Three-dimensional motion analysis captured and quantified all kinematic data. Average trunk flexion for the weightiest armour type was higher compared with control during the carry component of the ammunition box lift (p < 0.001) and sandbag lift tasks (p < 0.001). Trunk rotation ROM was lower for all armour types compared with control during the ammunition box place component (p < 0.001). The altered kinematics with body armour occurred independent of armour design. In order to optimise armour design, manufacturers need to work with end-users to explore how armour configurations interact with range of personal and situational factors in operationally relevant environments.
View less >
View more >Musculoskeletal injuries are reported as burdening the military. An identified risk factor for injury is carrying heavy loads; however, soldiers are also required to wear their load as body armour. To investigate the effects of body armour on trunk and hip kinematics during military-specific manual handling tasks, 16 males completed 3 tasks while wearing each of 4 body armour conditions plus a control. Three-dimensional motion analysis captured and quantified all kinematic data. Average trunk flexion for the weightiest armour type was higher compared with control during the carry component of the ammunition box lift (p < 0.001) and sandbag lift tasks (p < 0.001). Trunk rotation ROM was lower for all armour types compared with control during the ammunition box place component (p < 0.001). The altered kinematics with body armour occurred independent of armour design. In order to optimise armour design, manufacturers need to work with end-users to explore how armour configurations interact with range of personal and situational factors in operationally relevant environments.
View less >
Journal Title
Ergonomics
Volume
59
Issue
6
Copyright Statement
© 2015 Taylor & Francis. This is an Accepted Manuscript of an article published by Taylor & Francis in Ergonomics on 03 Nov 2015, available online: http://www.tandfonline.com/doi/full/10.1080/00140139.2015.1092589
Subject
Sports science and exercise
Design
Engineering design
Psychology