Thermoresistive properties of p-type 3C-SiC nanoscale thin films for high-temperature MEMS thermal-based sensors

View/ Open
File version
Accepted Manuscript (AM)
Author(s)
Toan, Dinh
Hoang-Phuong, Phan
Kozeki, Takahiro
Qamar, Afzaal
Namazu, Takahiro
Nam-Trung, Nguyen
Dzung, Viet Dao
Year published
2015
Metadata
Show full item recordAbstract
We report for the first time the thermoresistive property of p-type single crystalline 3C–SiC (p-3C–SiC), which was epitaxially grown on a silicon (Si) wafer, and then transferred to a glass substrate using a Focused Ion Beam (FIB) technique. A negative and relatively large temperature coefficient of resistance (TCR) up to −5500 ppm K−1 was observed. This TCR is attributed to two activation energy thresholds of 45 meV and 52 meV, corresponding to temperatures below and above 450 K, respectively, and a small reduction of hole mobility with increasing temperature. The large TCR indicates the suitability of p-3C–SiC for ...
View more >We report for the first time the thermoresistive property of p-type single crystalline 3C–SiC (p-3C–SiC), which was epitaxially grown on a silicon (Si) wafer, and then transferred to a glass substrate using a Focused Ion Beam (FIB) technique. A negative and relatively large temperature coefficient of resistance (TCR) up to −5500 ppm K−1 was observed. This TCR is attributed to two activation energy thresholds of 45 meV and 52 meV, corresponding to temperatures below and above 450 K, respectively, and a small reduction of hole mobility with increasing temperature. The large TCR indicates the suitability of p-3C–SiC for thermal-based sensors working in high-temperature environments.
View less >
View more >We report for the first time the thermoresistive property of p-type single crystalline 3C–SiC (p-3C–SiC), which was epitaxially grown on a silicon (Si) wafer, and then transferred to a glass substrate using a Focused Ion Beam (FIB) technique. A negative and relatively large temperature coefficient of resistance (TCR) up to −5500 ppm K−1 was observed. This TCR is attributed to two activation energy thresholds of 45 meV and 52 meV, corresponding to temperatures below and above 450 K, respectively, and a small reduction of hole mobility with increasing temperature. The large TCR indicates the suitability of p-3C–SiC for thermal-based sensors working in high-temperature environments.
View less >
Journal Title
RSC Advances
Volume
5
Issue
128
Copyright Statement
© 2015 Royal Society of Chemistry. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal website for access to the definitive, published version.
Subject
Chemical sciences
Other chemical sciences not elsewhere classified