• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Dual roles of iron powder on the synthesis of LiFePO4@C/graphene cathode a nanocomposite for high-performance lithium ion batteries

    Thumbnail
    View/Open
    LiuPUB775.pdf (1.048Mb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Liu, Tiefeng
    Qiu, Jingxia
    Wang, Bo
    Wang, Yazhou
    Wang, Dianlong
    Zhang, Shanqing
    Griffith University Author(s)
    Zhang, Shanqing
    Year published
    2015
    Metadata
    Show full item record
    Abstract
    Robust, conductive, and cost-effective LiFePO4@C/graphene composites are critical in the production of high performance LiFePO4 lithium ion batteries. Herein, a facile method is designed to synthesize LiFePO4@C/graphene nanocomposite by utilizing low-cost iron powder, wherein the iron powder offers dual roles: the raw source for LiFePO4 and the green reductant for graphene oxide (GO). In this proposed process, GO is reduced to reduced graphene oxide (rGO) by the iron powder and the produced iron ions are adsorbed on the surface of rGO. As a precursor of LiFePO4, the adsorbed iron ions facilitate the formation and the strong ...
    View more >
    Robust, conductive, and cost-effective LiFePO4@C/graphene composites are critical in the production of high performance LiFePO4 lithium ion batteries. Herein, a facile method is designed to synthesize LiFePO4@C/graphene nanocomposite by utilizing low-cost iron powder, wherein the iron powder offers dual roles: the raw source for LiFePO4 and the green reductant for graphene oxide (GO). In this proposed process, GO is reduced to reduced graphene oxide (rGO) by the iron powder and the produced iron ions are adsorbed on the surface of rGO. As a precursor of LiFePO4, the adsorbed iron ions facilitate the formation and the strong and uniform anchoring of the LiFePO4 nanoparticles onto the rGO surface. The resultant robust structure could prevent the rGO from restacking, help maintain the integrity of the LiFePO4@C/graphene nanocomposite and afford electronic and ionic conductivity in the rapid charge/discharge process. Consequently, the as-prepared nanocomposite exhibits an excellent high-rate capability and outstanding cycling stability. A discharge capacity of ca. 131 mA h g−1 is obtained at 5C rate and a remarkable cycling stability with capacity retention up to 95% is achieved over 1000 cycles.
    View less >
    Journal Title
    RSC Advances
    Volume
    5
    Issue
    121
    DOI
    https://doi.org/10.1039/c5ra20712f
    Copyright Statement
    © 2015 Royal Society of Chemistry. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal website for access to the definitive, published version.
    Subject
    Chemical sciences
    Other chemical sciences not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/101750
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander