Show simple item record

dc.contributor.authorLiu, Tiefeng
dc.contributor.authorQiu, Jingxia
dc.contributor.authorWang, Bo
dc.contributor.authorWang, Yazhou
dc.contributor.authorWang, Dianlong
dc.contributor.authorZhang, Shanqing
dc.date.accessioned2018-06-20T04:27:07Z
dc.date.available2018-06-20T04:27:07Z
dc.date.issued2015
dc.identifier.issn2046-2069
dc.identifier.doi10.1039/c5ra20712f
dc.identifier.urihttp://hdl.handle.net/10072/101750
dc.description.abstractRobust, conductive, and cost-effective LiFePO4@C/graphene composites are critical in the production of high performance LiFePO4 lithium ion batteries. Herein, a facile method is designed to synthesize LiFePO4@C/graphene nanocomposite by utilizing low-cost iron powder, wherein the iron powder offers dual roles: the raw source for LiFePO4 and the green reductant for graphene oxide (GO). In this proposed process, GO is reduced to reduced graphene oxide (rGO) by the iron powder and the produced iron ions are adsorbed on the surface of rGO. As a precursor of LiFePO4, the adsorbed iron ions facilitate the formation and the strong and uniform anchoring of the LiFePO4 nanoparticles onto the rGO surface. The resultant robust structure could prevent the rGO from restacking, help maintain the integrity of the LiFePO4@C/graphene nanocomposite and afford electronic and ionic conductivity in the rapid charge/discharge process. Consequently, the as-prepared nanocomposite exhibits an excellent high-rate capability and outstanding cycling stability. A discharge capacity of ca. 131 mA h g−1 is obtained at 5C rate and a remarkable cycling stability with capacity retention up to 95% is achieved over 1000 cycles.
dc.description.peerreviewedYes
dc.languageEnglish
dc.language.isoeng
dc.publisherRoyal Society of Chemistry
dc.relation.ispartofpagefrom100018
dc.relation.ispartofpageto100023
dc.relation.ispartofissue121
dc.relation.ispartofjournalRSC Advances
dc.relation.ispartofvolume5
dc.subject.fieldofresearchChemical sciences
dc.subject.fieldofresearchOther chemical sciences not elsewhere classified
dc.subject.fieldofresearchcode34
dc.subject.fieldofresearchcode349999
dc.titleDual roles of iron powder on the synthesis of LiFePO4@C/graphene cathode a nanocomposite for high-performance lithium ion batteries
dc.typeJournal article
dc.type.descriptionC1 - Articles
dc.type.codeC - Journal Articles
dc.description.versionAccepted Manuscript (AM)
gro.facultyGriffith Sciences, Environmental Futures Research Institute
gro.rights.copyright© 2015 Royal Society of Chemistry. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal website for access to the definitive, published version.
gro.hasfulltextFull Text
gro.griffith.authorZhang, Shanqing


Files in this item

This item appears in the following Collection(s)

  • Journal articles
    Contains articles published by Griffith authors in scholarly journals.

Show simple item record