• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Laboratory Study for Influence of Clay Content (CC) on Wave-Induced Liquefaction in Marine Sediments

    Author(s)
    Liu, B
    Jeng, D-S
    Griffith University Author(s)
    Jeng, Dong-Sheng
    Year published
    2016
    Metadata
    Show full item record
    Abstract
    In this artice, the influence of clay content on the wave-induced liquefaction in marine sediments was reported. The one-dimensional (1-D) equipment was setup with a vertical cylinder and 1.8–m–thick clayey sandy deposit and 0.2–m–thick water above the deposit. Unlike the previous experimental study for a single soil layer, this study used sand-kaolin mixtures, sand-illite mixtures, and sand-bentonite mixtures as the experimental samples. A series of experiments with 3,000 wave cycles in each test were conducted under numerous wave and soil conditions, which allowed us to examine the influence of clay content (CC) on ...
    View more >
    In this artice, the influence of clay content on the wave-induced liquefaction in marine sediments was reported. The one-dimensional (1-D) equipment was setup with a vertical cylinder and 1.8–m–thick clayey sandy deposit and 0.2–m–thick water above the deposit. Unlike the previous experimental study for a single soil layer, this study used sand-kaolin mixtures, sand-illite mixtures, and sand-bentonite mixtures as the experimental samples. A series of experiments with 3,000 wave cycles in each test were conducted under numerous wave and soil conditions, which allowed us to examine the influence of clay content (CC) on wave-induced liquefaction in marine sediments. The experimental results showed that the clayey sandy deposit will become prone to liquefaction with the increase of CC when CC is less than a critical value, which depends on the type of clay. However, when CC is greater than the critical value, liquefaction depth will decrease as CC increases. Furthermore, when the CC value reaches a certain level, liquefaction will not occur. For example, no liquefaction occurs when CC ≥ 33% for both kaolin-sand and illite-sand mixtures and CC ≥ 16.36% for bentonite-sand mixtures.
    View less >
    Journal Title
    Marine Georesources & Geotechnology
    Volume
    34
    Issue
    3
    DOI
    https://doi.org/10.1080/1064119X.2015.1005322
    Subject
    Physical Oceanography
    Resources Engineering and Extractive Metallurgy not elsewhere classified
    Oceanography
    Resources Engineering and Extractive Metallurgy
    Publication URI
    http://hdl.handle.net/10072/101960
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander