• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Soil phosphorus fractionation and nutrient dynamics along the Cooloola coastal dune chronosequence, southern Queensland, Australia

    Author(s)
    Chen, CR
    Hou, EQ
    Condron, LM
    Bacon, G
    Esfandbod, M
    Olley, J
    Turner, BL
    Griffith University Author(s)
    Chen, Chengrong
    Olley, Jon M.
    Year published
    2015
    Metadata
    Show full item record
    Abstract
    The amounts and forms of soil phosphorus (P) follow predictable patterns during long-term pedogenesis, but have rarely been examined along subtropical chronosequences. We quantified changes in soil nutrient stocks, foliar nutrient concentrations, and the chemical forms of soil P along the Cooloola chronosequence, a series of coastal dunes spanning ca. 500,000 years of pedogenesis in subtropical Queensland. The total P stock in the upper 30 cm of the soil profile declined continuously with soil age, from 229–237 kg ha− 1 on the youngest soils (40 years old) to 24–28 kg ha− 1 on the oldest soils (195–> 460 ka). In contrast, ...
    View more >
    The amounts and forms of soil phosphorus (P) follow predictable patterns during long-term pedogenesis, but have rarely been examined along subtropical chronosequences. We quantified changes in soil nutrient stocks, foliar nutrient concentrations, and the chemical forms of soil P along the Cooloola chronosequence, a series of coastal dunes spanning ca. 500,000 years of pedogenesis in subtropical Queensland. The total P stock in the upper 30 cm of the soil profile declined continuously with soil age, from 229–237 kg ha− 1 on the youngest soils (40 years old) to 24–28 kg ha− 1 on the oldest soils (195–> 460 ka). In contrast, total carbon (C) and nitrogen (N) stocks increased initially along the chronosequence and then declined in the oldest soils. As a consequence, soil N:P ratios increased continually throughout the sequence, from ≤ 4 on the youngest soils to 27–30 on the oldest soils. This indication of increasing biological P stress and ultimately P limitation was further supported by a decline in foliar P concentrations and increasing foliar N:P ratios of two common plant genera along the chronosequence. Sequential P fractionation revealed that although all forms of P declined during pedogenesis, young soils contained low concentrations of primary mineral P and relatively high concentrations of occluded P associated with secondary minerals, suggesting that the parent sand originated from strongly-weathered continental soils. We conclude that the Cooloola chronosequence is an important example of long-term ecosystem development under a subtropical climate, although the pre-weathered nature of the parent sand indicates that the sequence represents a modification of the Walker and Syers model of P transformations during pedogenesis.
    View less >
    Journal Title
    Geoderma
    Volume
    257-258
    DOI
    https://doi.org/10.1016/j.geoderma.2015.04.027
    Subject
    Environmental sciences
    Environmental management not elsewhere classified
    Biological sciences
    Agricultural, veterinary and food sciences
    Publication URI
    http://hdl.handle.net/10072/102470
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander