• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Lipid Biomarker and Isotopic Study of Community Distribution and Biomarker Preservation in a Laminated Microbial Mat from Shark Bay, Western Australia

    Author(s)
    Pages, Anais
    Grice, Kliti
    Welsh, David T
    Teasdale, Peter T
    Van Kranendonk, Martin J
    Greenwood, Paul
    Griffith University Author(s)
    Teasdale, Peter R.
    Welsh, David T.
    Year published
    2015
    Metadata
    Show full item record
    Abstract
    Modern microbial mats from Shark Bay present some structural similarities with ancient stromatolites; thus, the functionality of microbial communities and processes of diagenetic preservation of modern mats may provide an insight into ancient microbial assemblages and preservation. In this study, the vertical distribution of microbial communities was investigated in a well-laminated smooth mat from Shark Bay. Biolipid and compound-specific isotopic analyses were performed to investigate the distribution of microbial communities in four distinct layers of the mat. Biomarkers indicative of cyanobacteria were more abundant in ...
    View more >
    Modern microbial mats from Shark Bay present some structural similarities with ancient stromatolites; thus, the functionality of microbial communities and processes of diagenetic preservation of modern mats may provide an insight into ancient microbial assemblages and preservation. In this study, the vertical distribution of microbial communities was investigated in a well-laminated smooth mat from Shark Bay. Biolipid and compound-specific isotopic analyses were performed to investigate the distribution of microbial communities in four distinct layers of the mat. Biomarkers indicative of cyanobacteria were more abundant in the uppermost oxic layer. Diatom markers (e.g. C25 HBI alkene, C20:4ω6 and C20:5ω3 polar lipid fatty acids (PLFAs)) were also detected in high abundance in the uppermost layer, but also in the deepest layer under conditions of permanent darkness and anoxia, where they probably used NO3− for respiration. CycC19:0, an abundant PLFA of purple sulfur bacteria (PSB), was detected in all layers and presented the most 13C-depleted values of all PLFAs, consistent with photoautotrophic PSB. Sulfur-bound aliphatic and aromatic biomarkers were detected in all layers, highlighting the occurrence of early sulfurisation which may be an important mechanism in the sedimentary preservation of functional biolipids in living and, thus, also ancient mats.
    View less >
    Journal Title
    Environmental Microbiology
    Volume
    70
    DOI
    https://doi.org/10.1007/s00248-015-0598-3
    Subject
    Soil sciences
    Ecology
    Microbiology
    Microbiology not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/102517
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander