Show simple item record

dc.contributor.authorZhao, Yuxin
dc.contributor.authorFan, LiLi
dc.contributor.authorZhang, Ying
dc.contributor.authorZhao, Hu
dc.contributor.authorLi, Xuejin
dc.contributor.authorLi, Yanpeng
dc.contributor.authorWen, Ling
dc.contributor.authorYan, Zifeng
dc.contributor.authorHuo, Ziyang
dc.date.accessioned2017-06-02T00:11:03Z
dc.date.available2017-06-02T00:11:03Z
dc.date.issued2015
dc.identifier.issn1944-8244
dc.identifier.doi10.1021/acsami.5b04614
dc.identifier.urihttp://hdl.handle.net/10072/102524
dc.description.abstractElectrode design in nanoscale is expected to contribute significantly in constructing an enhanced electrochemical platform for a superb sensor. In this work, we present a facile synthesis of new fashioned heteronanostructure that is composed of one-dimensional Cu nanowires (NWs) and epitaxially grown two-dimensional Cu2O nanosheets (NSs). This hierarchical architecture is quite attractive in molecules detection for three unique characteristics: (1) the three-dimensional hierarchical architecture provides large specific surface areas for more active catalytic sites and easy accessibility for the target molecules; (2) the high-quality heterojunction with minimal lattice mismatch between the built-in current collector (Cu core) and active medium (Cu2O shell) considerably promotes the electron transport; (3) the adequate free space between branches and anisotropic NWs can accommodate a large volume change to avoid collapse or distortion during the reduplicative operation processes under applied potentials. The above three proposed advantages have been addressed in the fabricated Cu@Cu2O NS-NW-based superb glucose sensors, where a successful integration of ultrahigh sensitivity (1420 μA mM–1 cm–2), low limit of detection (40 nM), and fast response (within 0.1 s) has been realized. Furthermore, the durability and reproducibility of such devices made by branched core–shell nanowires were investigated to prove viability of the proposed structures. This achievement in current work demonstrates an innovative strategy for nanoscale electrode design and application in molecular detection.
dc.description.peerreviewedYes
dc.languageEnglish
dc.publisherAmerican Chemical Society
dc.publisher.placeUnited States
dc.relation.ispartofpagefrom16802
dc.relation.ispartofpageto16812
dc.relation.ispartofissue30
dc.relation.ispartofjournalACS Applied Materials and Interfaces
dc.relation.ispartofvolume7
dc.subject.fieldofresearchNanoelectromechanical Systems
dc.subject.fieldofresearchChemical Engineering not elsewhere classified
dc.subject.fieldofresearchChemical Sciences
dc.subject.fieldofresearchEngineering
dc.subject.fieldofresearchcode100704
dc.subject.fieldofresearchcode090499
dc.subject.fieldofresearchcode03
dc.subject.fieldofresearchcode09
dc.titleHyper-Branched Cu@Cu2O Coaxial Nanowires Mesh Electrode for Ultra-Sensitive Glucose Detection
dc.typeJournal article
dc.type.descriptionC1 - Articles
dc.type.codeC - Journal Articles
dc.description.versionPost-print
gro.rights.copyrightThis document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Applied Materials & Interfaces, copyright 2015 American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://dx.doi.org/10.1021/acsami.5b04614.
gro.hasfulltextFull Text
gro.griffith.authorHuo, Ziyang
gro.griffith.authorWen, Larry
gro.griffith.authorZhao, Huijun


Files in this item

This item appears in the following Collection(s)

  • Journal articles
    Contains articles published by Griffith authors in scholarly journals.

Show simple item record