• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • A novel approach for the discovery of chemically diverse anti-malarial compounds targeting the Plasmodium falciparum Coenzyme A synthesis pathway

    Thumbnail
    View/Open
    FletcherPUB52.pdf (980.5Kb)
    File version
    Version of Record (VoR)
    Author(s)
    Fletcher, Sabine
    Avery, Vicky M
    Griffith University Author(s)
    Avery, Vicky M.
    Fletcher, Sabine
    Year published
    2014
    Metadata
    Show full item record
    Abstract
    Background Malaria is a devastating parasitic disease, causing more than 600,000 deaths annually. Drug resistance has rendered previous generation anti-malarials ineffective and is also rapidly emerging against the current therapeutics of choice, artemisinin and its derivatives, making the discovery of new anti-malarials with novel mechanisms of action a priority. The Coenzyme A (CoA) synthesis pathway, a well-known anti-microbial drug target that is also essential for the malaria parasite Plasmodium falciparum, has not yet been exploited in anti-malarial drug development. A novel high throughput approach for the identification ...
    View more >
    Background Malaria is a devastating parasitic disease, causing more than 600,000 deaths annually. Drug resistance has rendered previous generation anti-malarials ineffective and is also rapidly emerging against the current therapeutics of choice, artemisinin and its derivatives, making the discovery of new anti-malarials with novel mechanisms of action a priority. The Coenzyme A (CoA) synthesis pathway, a well-known anti-microbial drug target that is also essential for the malaria parasite Plasmodium falciparum, has not yet been exploited in anti-malarial drug development. A novel high throughput approach for the identification of chemically diverse inhibitors of the CoA synthesis pathway is reported. Methods To identify novel CoA synthesis pathway inhibitors, a chemical rescue screening approach was developed. In short, a test compound was considered likely to inhibit the P. falciparum CoA synthesis pathway, if addition of the end product of the pathway, CoA, was able to negate the growth-inhibitory action of the compound on P. falciparum parasites. Results The chemical rescue approach was employed to screen the Medicines for Malaria Venture malaria box and a small focussed compound library. This resulted in the identification of 12 chemically diverse potential inhibitors of the CoA pathway. To ascertain accurate potency and selectivity, the half-maximal inhibitory concentration (IC50 value) of these compounds was determined for both P. falciparum and a human cell line. Seven compounds showed submicromolar activity against the parasite, with selectivity indices ranging between six and greater than 300. CoA supplementation was confirmed to alleviate the effects on parasite growth and cell viability in a dose dependent manner. Microscopic investigation into the stage of effect and phenotype of treated parasites was performed on a selection of the active compounds. Conclusions The chemical rescue approach described resulted in the identification of a set of chemically diverse CoA synthesis pathway inhibitors with IC50 values ranging between 120 nM and 6 卮 The identified compounds will be utilized as tools for further investigating the parasite CoA synthesis pathway to define their exact mechanism of action. Furthermore, the chemical diversity of the compounds identified substantiates the suitability of this approach to identify novel starting points for future anti-malarial drug development.
    View less >
    Journal Title
    Malaria Journal
    Volume
    13
    DOI
    https://doi.org/10.1186/1475-2875-13-343
    Copyright Statement
    © 2014 Fletcher and Avery; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
    Subject
    Microbiology
    Medical microbiology
    Medical microbiology not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/103164
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander