Plasma-Catalytic Oxidation of Toluene on MnxOy at Atmospheric Pressure and Room Temperature
Author(s)
Lu, Meijuan
Huang, Rong
Wang, Peitao
Chen, Limin
Wu, Junliang
Fu, Mingli
Wen, William
Huang, Bichun
Ye, Daiqi
Griffith University Author(s)
Year published
2014
Metadata
Show full item recordAbstract
MnxOy/SBA-15 catalysts were prepared via the impregnation method and utilized for toluene removal in dielectric barrier discharge plasma at atmospheric pressure and room temperature. The catalysts were characterized by X-ray diffraction, N2 adsorption-desorption, Raman spectroscopy, X-ray photoelectron spectroscopy, H2 temperature-programmed reduction, and O2 temperature-programmed desorption methods. The characterization results indicated that manganese loading did not influence the 2D-hexagonal mesoporous structure of SBA-15. The catalyst had various oxidation states of manganese (Mn2+, Mn3+, and Mn4+), with Mn3+ being the ...
View more >MnxOy/SBA-15 catalysts were prepared via the impregnation method and utilized for toluene removal in dielectric barrier discharge plasma at atmospheric pressure and room temperature. The catalysts were characterized by X-ray diffraction, N2 adsorption-desorption, Raman spectroscopy, X-ray photoelectron spectroscopy, H2 temperature-programmed reduction, and O2 temperature-programmed desorption methods. The characterization results indicated that manganese loading did not influence the 2D-hexagonal mesoporous structure of SBA-15. The catalyst had various oxidation states of manganese (Mn2+, Mn3+, and Mn4+), with Mn3+ being the dominant oxidation state. Toluene removal was investigated in the environment of pure N2 and 80 % N2 + 20 % O2 plasma, showing that the toluene removal efficiency and CO2 selectivity were noticeably increased by MnxOy/SBA-15, especially in the presence of 5 % Mn/SBA-15. This activity was closely related to the high dispersion of 5 % Mn on SBA-15 and the lowest reduction temperature exhibited by this catalyst. Mn loading increased the yield of CO2 in the N2 plasma and promoted the deep oxidation of toluene. During toluene oxidation, oxygen exchange might follow a pathway, wherein bulk oxygen was released from the MnxOy/SBA-15 surface; gas-phase O2 subsequently filled up the vacancies created on the oxide. Each of the manganese oxidation states played an important role; Mn2O3 was considered as a bridge for oxygen exchange between the gas phase and the catalyst, and Mn3O4 mediated transfer of oxygen between the catalyst and toluene.
View less >
View more >MnxOy/SBA-15 catalysts were prepared via the impregnation method and utilized for toluene removal in dielectric barrier discharge plasma at atmospheric pressure and room temperature. The catalysts were characterized by X-ray diffraction, N2 adsorption-desorption, Raman spectroscopy, X-ray photoelectron spectroscopy, H2 temperature-programmed reduction, and O2 temperature-programmed desorption methods. The characterization results indicated that manganese loading did not influence the 2D-hexagonal mesoporous structure of SBA-15. The catalyst had various oxidation states of manganese (Mn2+, Mn3+, and Mn4+), with Mn3+ being the dominant oxidation state. Toluene removal was investigated in the environment of pure N2 and 80 % N2 + 20 % O2 plasma, showing that the toluene removal efficiency and CO2 selectivity were noticeably increased by MnxOy/SBA-15, especially in the presence of 5 % Mn/SBA-15. This activity was closely related to the high dispersion of 5 % Mn on SBA-15 and the lowest reduction temperature exhibited by this catalyst. Mn loading increased the yield of CO2 in the N2 plasma and promoted the deep oxidation of toluene. During toluene oxidation, oxygen exchange might follow a pathway, wherein bulk oxygen was released from the MnxOy/SBA-15 surface; gas-phase O2 subsequently filled up the vacancies created on the oxide. Each of the manganese oxidation states played an important role; Mn2O3 was considered as a bridge for oxygen exchange between the gas phase and the catalyst, and Mn3O4 mediated transfer of oxygen between the catalyst and toluene.
View less >
Journal Title
Plasma Chemistry & Plasma Processing
Volume
34
Issue
5
Subject
Atomic, Molecular, Nuclear, Particle and Plasma Physics not elsewhere classified
Atomic, Molecular, Nuclear, Particle and Plasma Physics
Chemical Engineering