• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • The sensitivity of surface plasmon resonance based viral aerosol detection

    Author(s)
    Usachev, Evgeny V
    Tam, Alexander M
    Usacheva, Olga V
    Agranovski, Igor E
    Griffith University Author(s)
    Agranovski, Igor E.
    Usachev, Evgeny
    Tam, Alexander M.
    Year published
    2014
    Metadata
    Show full item record
    Abstract
    It is well known that bioaerosols pose hazard to human health. Bioaerosols could be a cause of various severe diseases. Rapid and precise detection of airborne pathogens in different environments has received considerable attention in recent years. Earlier, we explored a Surface Plasmon Resonance (SPR) protocol in conjunction with our recently developed personal bioaerosol sampler for rapid detection of airborne viruses. The developed label-free approach has been verified under controlled laboratory conditions. The immunosensor based technique was capable of detecting airborne virus in a broad range of concentrations within ...
    View more >
    It is well known that bioaerosols pose hazard to human health. Bioaerosols could be a cause of various severe diseases. Rapid and precise detection of airborne pathogens in different environments has received considerable attention in recent years. Earlier, we explored a Surface Plasmon Resonance (SPR) protocol in conjunction with our recently developed personal bioaerosol sampler for rapid detection of airborne viruses. The developed label-free approach has been verified under controlled laboratory conditions. The immunosensor based technique was capable of detecting airborne virus in a broad range of concentrations within minutes with high accuracy and specificity. This project is a logical continuation of our previous study where we describe the performance evaluation study of two immunosensor types (differed in surface chemistry) for direct viral detection. Common viral surrogate MS2 bacteriophage was employed as a model organism. The detection limits of developed SPR techniques were found to be 1.12×106 PFU/mL and 2.2×107 PFU/mL for the COOH1 and COOH5 sensor types respectively. Our data confirmed that COOH1 based sensor is more sensitive and robust regarding detection of small viral objects like MS2 phage. The combination of SPR procedure with the bioaerosol sampler allowed detecting virus in the air within less than two minutes. The minimal detectable viral concentration in the air for 1 min of sampling time was found to be 1.9×107 PFU per litre. Our findings justify that the SPR technique is fully suitable for the bioaerosol monitoring applications. The proposed technology, based on the direct detection of viral aerosols, could be applied to various viral pathogens infectious to animals or humans, and be further realised in a concept of portable real-time bioaerosol monitor.
    View less >
    Journal Title
    Journal of Aerosol Science
    Volume
    76
    DOI
    https://doi.org/10.1016/j.jaerosci.2014.05.004
    Subject
    Chemical Engineering not elsewhere classified
    Atmospheric Sciences not elsewhere classified
    Physical Chemistry (incl. Structural)
    Atmospheric Sciences
    Chemical Engineering
    Publication URI
    http://hdl.handle.net/10072/103676
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander