• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Segmentation of the Left Ventricle From Ultrasound Using Random Forest with Active Shape Model

    Author(s)
    Belous, G
    Busch, A
    Rowlands, D
    Griffith University Author(s)
    Rowlands, David D.
    Busch, Andrew W.
    Year published
    2014
    Metadata
    Show full item record
    Abstract
    This paper presents a model-based learning segmentation algorithm to detect the left ventricle (LV) boundary of the heart from ultrasound (US) images by combining a random forest classifier with an active shape model (ASM). Our method applies an ASM for initial detection of the LV landmarks. Each landmark is subsequently directed radially inward or outward as a result of the random forest classifier identifying the landmark as outside or inside the LV boundary, respectively. This is done while preserving the shape characteristics obtained from the ASM. Our objective is to evaluate the combined application of a random forest ...
    View more >
    This paper presents a model-based learning segmentation algorithm to detect the left ventricle (LV) boundary of the heart from ultrasound (US) images by combining a random forest classifier with an active shape model (ASM). Our method applies an ASM for initial detection of the LV landmarks. Each landmark is subsequently directed radially inward or outward as a result of the random forest classifier identifying the landmark as outside or inside the LV boundary, respectively. This is done while preserving the shape characteristics obtained from the ASM. Our objective is to evaluate the combined application of a random forest classifier with an ASM for detecting the LV boundary with US images. Accuracy of this method is evaluated by comparing both our method and ASM to LV contours traced by an expert. A dataset of 85 randomly selected patient studies was chosen. The method exhibits improved accuracy compared to the ASM, producing a global overlap coefficient of 90.09% compared to 83.8% obtained with an active shape model.
    View less >
    Conference Title
    Proceedings - 1st International Conference on Artificial Intelligence, Modelling and Simulation, AIMS 2013
    Publisher URI
    http://ieeexplore.ieee.org/abstract/document/6959936/
    Subject
    Computer vision
    Image processing
    Publication URI
    http://hdl.handle.net/10072/112836
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander