Off-line Signature Verification Based on the Modified Direction Feature

View/ Open
Author(s)
Armand, Stephane
Blumenstein, Michael
Muthukkumarasamy, Vallipuram
Leedham, Graham
Griffith University Author(s)
Year published
2006
Metadata
Show full item recordAbstract
Signature identification and verification has been a topic of interest and importance for many years in the area of biometrics. In this paper we present an effective method to perform off-line signature verification and identification. To commence the process, the signature's contour is first determined from its binary representation. Unique structural features are subsequently extracted from the signature's contour through the use of a novel combination of the Modified Direction Feature (MDF) in conjunction with additional distinguishing features to train and test two Neural Network-based classifiers. A Resilient Back ...
View more >Signature identification and verification has been a topic of interest and importance for many years in the area of biometrics. In this paper we present an effective method to perform off-line signature verification and identification. To commence the process, the signature's contour is first determined from its binary representation. Unique structural features are subsequently extracted from the signature's contour through the use of a novel combination of the Modified Direction Feature (MDF) in conjunction with additional distinguishing features to train and test two Neural Network-based classifiers. A Resilient Back Propagation neural network and a Radial Basis Function neural network were compared. Using a publicly available database of 2106 signatures containing 936 genuine and 1170 forgeries, we obtained a verification rate of 91.12%.
View less >
View more >Signature identification and verification has been a topic of interest and importance for many years in the area of biometrics. In this paper we present an effective method to perform off-line signature verification and identification. To commence the process, the signature's contour is first determined from its binary representation. Unique structural features are subsequently extracted from the signature's contour through the use of a novel combination of the Modified Direction Feature (MDF) in conjunction with additional distinguishing features to train and test two Neural Network-based classifiers. A Resilient Back Propagation neural network and a Radial Basis Function neural network were compared. Using a publicly available database of 2106 signatures containing 936 genuine and 1170 forgeries, we obtained a verification rate of 91.12%.
View less >
Conference Title
18TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 4, PROCEEDINGS
Volume
4
Publisher URI
Copyright Statement
© 2006 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.