• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Optical State Measurement by Information Transfer

    Author(s)
    Pegg, DT
    Barnett, SM
    Griffith University Author(s)
    Pegg, David T.
    Year published
    1999
    Metadata
    Show full item record
    Abstract
    Mathematically, the simplest state of light containing phase information is a superposition of the vacuum and the one-photon state and, as we show in this paper, such a state is reasonably simple to measure. We investigate how the information contained in a more complicated pure state of light, in particular the ratio of successive number-state coefficients, can be transferred selectively to fields in this two-state superposition for subsequent measurement. By this means the number-state representation of the more complicated state can be ascertained, provided there are no gaps in the number state distribution. We also discuss ...
    View more >
    Mathematically, the simplest state of light containing phase information is a superposition of the vacuum and the one-photon state and, as we show in this paper, such a state is reasonably simple to measure. We investigate how the information contained in a more complicated pure state of light, in particular the ratio of successive number-state coefficients, can be transferred selectively to fields in this two-state superposition for subsequent measurement. By this means the number-state representation of the more complicated state can be ascertained, provided there are no gaps in the number state distribution. We also discuss how to correct for the effect of non-unit efficiencies of the photodetectors involved in the transferral process.
    View less >
    Journal Title
    Journal of Modern Optics
    Volume
    46
    Issue
    11
    DOI
    https://doi.org/10.1080/09500349908231363
    Subject
    Atomic, molecular and optical physics
    Quantum physics
    Nanotechnology
    Publication URI
    http://hdl.handle.net/10072/120961
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander