• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Apoptosis Occurs in Endothelial Cells during Hypertension-Induced Microvascular Rarefaction

    Author(s)
    Gobé, G.
    Browning, J.
    Howard, T.
    Hogg, N.
    Winterford, C.
    Cross, R.
    Griffith University Author(s)
    Browning, Jay
    Cross, Ron
    Year published
    1997
    Metadata
    Show full item record
    Abstract
    Disappearance of microvessels (microvascular rarefaction) during hypertension is a process that exacerbates the hypertensive condition. The cellular process by which the vessels disappear is not known. In the present study, we investigate the pathogenic role of cell death, specifically apoptosis, in hypertension-induced microvascular rarefaction. An established rodent one kidney/one clip (1K1C) Goldblatt model of hypertension was used. Histological and ultrastructural characteristics of apoptosis and necrosis were used to define incidence of the two types of cell death. The new method ofin situend-labeling DNA fragmentation ...
    View more >
    Disappearance of microvessels (microvascular rarefaction) during hypertension is a process that exacerbates the hypertensive condition. The cellular process by which the vessels disappear is not known. In the present study, we investigate the pathogenic role of cell death, specifically apoptosis, in hypertension-induced microvascular rarefaction. An established rodent one kidney/one clip (1K1C) Goldblatt model of hypertension was used. Histological and ultrastructural characteristics of apoptosis and necrosis were used to define incidence of the two types of cell death. The new method ofin situend-labeling DNA fragmentation known to occur in apoptosis was analyzed, and expression of an apoptosis-related gene, clusterin, identified using Northern blots andin situhybridization. Microvessels in skeletal muscle were compared in 1K1C animals (n = 3 per time point) and control animals (n = 6) at experimental times after surgery up to established hypertension (1, 2, and 4 days and 1, 2, and 6 weeks). Loss of microvessels in hypertensive animals was verified. Endothelial cell apoptosis, not necrosis, was identified and was more frequent in hypertensive animals than in controls. Apoptosis of endothelial cells was found most often within 1 week after 1K1C surgery. Clusterin mRNA transcripts were increased above control levels in all 1K1C treatments, but expression was not localized specifically above endothelial cells. In this instance, increased expression of clusterin in hypertensive animals may be an epiphenomenon, not directly related to the presence of apoptosis. The results demonstrate a role for apoptosis in the development of microvascular rarefaction in hypertension. The significance of this novel finding is that these results may now be used to direct site-specific anti-apoptosis therapy for treatment of structural rarefaction, at present unaffected by conventional anti-hypertensive therapies.
    View less >
    Journal Title
    Journal of Structural Biology
    Volume
    118
    Issue
    1
    DOI
    https://doi.org/10.1006/jsbi.1996.3835
    Subject
    Biochemistry and Cell Biology
    Zoology
    Publication URI
    http://hdl.handle.net/10072/121475
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander