• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Dethiosulfovibrio peptidovorans gen. nov., sp. nov., a New Anaerobic, Slightly Halophilic, Thiosulfate-Reducing Bacterium from Corroding Offshore Oil Wells

    Author(s)
    Magot, M.
    Ravot, G.
    Campaignolle, X.
    Ollivier, B.
    Patel, B.
    Fardeau, M.
    Thomas, P.
    Crolet, J.
    Garcia, J.
    Griffith University Author(s)
    Patel, Bharat K.
    Year published
    1997
    Metadata
    Show full item record
    Abstract
    A strictly anaerobic thiosulfate-reducing bacterium was isolated from a corroding offshore oil well in Congo and was designated strain SEBR 4207T. Pure culture of the strain induced a very active pitting corrosion of mild steel, with penetration rates of up to 4 mm per year. This constitutes the first experimental evidence of the involvement of thiosulfate reduction in microbial corrosion of steel. Strain SEBR 4207T cells were vibrios (3 to 5 by 1 µm), stained gram negative, and possessed lateral flagella. Spores were not detected. Optimum growth occurred in the presence of 3% NaCl at pH 7.0 and 42°C. Strain SEBR 4207T ...
    View more >
    A strictly anaerobic thiosulfate-reducing bacterium was isolated from a corroding offshore oil well in Congo and was designated strain SEBR 4207T. Pure culture of the strain induced a very active pitting corrosion of mild steel, with penetration rates of up to 4 mm per year. This constitutes the first experimental evidence of the involvement of thiosulfate reduction in microbial corrosion of steel. Strain SEBR 4207T cells were vibrios (3 to 5 by 1 µm), stained gram negative, and possessed lateral flagella. Spores were not detected. Optimum growth occurred in the presence of 3% NaCl at pH 7.0 and 42°C. Strain SEBR 4207T utilized peptides and amino acids, but not sugars or fatty acids. It fermented serine, histidine, and Casamino Acids, whereas arginine, glutamate, leucine, isoleucine, alanine, valine, methionine, and asparagine were only used in the presence of thiosulfate. Peptides were fermented to acetate, isobutyrate, isovalerate, 2-methylbutyrate, H2, and CO2. The addition of either thiosulfate or sulfur but not sulfate increased peptide utilization, growth rate, and biomass; during growth, H2S was produced and a concomitant decrease in H2 was observed. The addition of either thiosulfate or sulfur also reversed H2 inhibition. 16S rRNA sequence analysis indicates that strain SEBR 4207T is distantly related to members of the genus Thermoanaerobacter (83% similarity). Because the phenotypic and phylogenetic characteristics cannot be assigned to any described genus, strain SEBR 4207T is designated as a new species of a new genus, Dethiosulfovibrio peptidovorans gen. nov., sp. nov. Strain SEBR 4207T has been deposited in the Deutsche Sammlung von Mikroorganismen und zellkulturen GmbH (= DSM 11002).
    View less >
    Journal Title
    International Journal of Systematic and Evolutionary Microbiology
    Volume
    47
    Issue
    3
    DOI
    https://doi.org/10.1099/00207713-47-3-818
    Subject
    Evolutionary Biology
    Microbiology
    Medical Microbiology
    Publication URI
    http://hdl.handle.net/10072/121503
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander