Modelling the production and cycling of dimethylsulphide during the vernal bloom in the Barents Sea
Author(s)
Gabric, AJ
Matrai, PA
Vernet, M
Griffith University Author(s)
Year published
1999
Metadata
Show full item recordAbstract
Recent field work suggests an important ro^le for the Arctic Ocean in the global budget of dimethylsulphide (DMS), a climatically active volatile sulphur compound. Here, we have used an existing DMS production model and local field data to examine the temporal dynamics of the DMS cycle during the spring bloom in the Arctic shelf of the Barents Sea. The timing and duration of the spring phytoplankton bloom has been shown to be a key determinant of the flux of DMS to the atmosphere. Particular oceanic conditions due to the retreating ice-edge (e.g., a shallow mixed layer) can have an important effect on the timing of the ...
View more >Recent field work suggests an important ro^le for the Arctic Ocean in the global budget of dimethylsulphide (DMS), a climatically active volatile sulphur compound. Here, we have used an existing DMS production model and local field data to examine the temporal dynamics of the DMS cycle during the spring bloom in the Arctic shelf of the Barents Sea. The timing and duration of the spring phytoplankton bloom has been shown to be a key determinant of the flux of DMS to the atmosphere. Particular oceanic conditions due to the retreating ice-edge (e.g., a shallow mixed layer) can have an important effect on the timing of the phytoplankton bloom and thus the effux of DMS in this region. Model simulations support the view that algal taxonomy is not the most important factor determining DMS production in these waters. The mean vernal DMS flux is predicted to be 0.063 mg S m-2 d-1 which is in general agreement with previous summer season averages in the Arctic.
View less >
View more >Recent field work suggests an important ro^le for the Arctic Ocean in the global budget of dimethylsulphide (DMS), a climatically active volatile sulphur compound. Here, we have used an existing DMS production model and local field data to examine the temporal dynamics of the DMS cycle during the spring bloom in the Arctic shelf of the Barents Sea. The timing and duration of the spring phytoplankton bloom has been shown to be a key determinant of the flux of DMS to the atmosphere. Particular oceanic conditions due to the retreating ice-edge (e.g., a shallow mixed layer) can have an important effect on the timing of the phytoplankton bloom and thus the effux of DMS in this region. Model simulations support the view that algal taxonomy is not the most important factor determining DMS production in these waters. The mean vernal DMS flux is predicted to be 0.063 mg S m-2 d-1 which is in general agreement with previous summer season averages in the Arctic.
View less >
Journal Title
Tellus Series B: Chemical and Physical Meteorology
Volume
51
Issue
5
Subject
Atmospheric Sciences
Environmental Science and Management