• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Partial Meet Revision and Contraction in Logic Programs

    Thumbnail
    View/Open
    BinnewiesPUB1072.pdf (206.1Kb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Binnewies, Sebastian
    Zhuang, Zhiqiang
    Wang, Kewen
    Griffith University Author(s)
    Wang, Kewen
    Binnewies, Sebastian
    Year published
    2015
    Metadata
    Show full item record
    Abstract
    The recent years have seen several proposals aimed at placing the revision of logic programs within the belief change frameworks established for classical logic. A crucial challenge of this task lies in the nonmonotonicity of standard logic programming semantics. Existing approaches have thus used the monotonic characterisation via SE-models to develop semantic revision operators, which however neglect any syntactic information, or reverted to a syntax-oriented belief base approach altogether. In this paper, we bridge the gap between semantic and syntactic techniques by adapting the idea of a partial meet construction from ...
    View more >
    The recent years have seen several proposals aimed at placing the revision of logic programs within the belief change frameworks established for classical logic. A crucial challenge of this task lies in the nonmonotonicity of standard logic programming semantics. Existing approaches have thus used the monotonic characterisation via SE-models to develop semantic revision operators, which however neglect any syntactic information, or reverted to a syntax-oriented belief base approach altogether. In this paper, we bridge the gap between semantic and syntactic techniques by adapting the idea of a partial meet construction from classical belief change. This type of construction allows us to define new model-based operators for revising as well as contracting logic programs that preserve the syntactic structure of the programs involved. We demonstrate the rationality of our operators by testing them against the classic AGM or alternative belief change postulates adapted to the logic programming setting. We further present an algorithm that reduces the partial meet revision or contraction of a logic program to performing revision or contraction only on the relevant subsets of that program.
    View less >
    Conference Title
    PROCEEDINGS OF THE TWENTY-NINTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE
    Volume
    2
    Publisher URI
    https://aaai.org/Conferences/AAAI/aaai15.php
    Copyright Statement
    © 2015 AAAI Press. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the conference's website for access to the definitive, published version.
    Subject
    Theory of computation
    Publication URI
    http://hdl.handle.net/10072/123473
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander