• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Photocatalytic inactivation of Escherichia coli—The roles of genes in β-oxidation of fatty acid degradation

    Author(s)
    Chu, Ka Him
    Huang, Guocheng
    An, Taicheng
    Li, Guiying
    Yip, Pui Ling
    Ng, Tsz Wai
    Yip, Ho Yin
    Zhao, Huijun
    Wong, Po Keung
    Griffith University Author(s)
    Zhao, Huijun
    Year published
    2016
    Metadata
    Show full item record
    Abstract
    A genetic study on the relationship between cell membrane fatty acid profile and photocatalytic inactivation efficiency of Escherichia coli was conducted. Photocatalytic inactivation of a parental strain (E. coli BW25113) and its seven isogenic mutants with deletion of single gene involving in β-oxidation of fatty acid degradation (fad) were compared. Most of the mutants involved in fatty acid degradation did not show significant difference in susceptibility towards photocatalytic inactivation compared with the parental strain, except that E. coli JW1176 (fadR mutant) and E. coli JW3935 (fabR mutant) showed a lower and higher ...
    View more >
    A genetic study on the relationship between cell membrane fatty acid profile and photocatalytic inactivation efficiency of Escherichia coli was conducted. Photocatalytic inactivation of a parental strain (E. coli BW25113) and its seven isogenic mutants with deletion of single gene involving in β-oxidation of fatty acid degradation (fad) were compared. Most of the mutants involved in fatty acid degradation did not show significant difference in susceptibility towards photocatalytic inactivation compared with the parental strain, except that E. coli JW1176 (fadR mutant) and E. coli JW3935 (fabR mutant) showed a lower and higher sensitivity than the parental strain, respectively. Fluorescence microscopic analysis showed that the loss of cell permeability preceded the inactivation of bacterial cells. The results of temperature pre-treatment and fatty acid profiles of the parental strain and fadR mutant indicated that the alteration in cell membrane fatty acid composition played an important role, but not the most crucial one to affect the susceptibility of bacterial cell towards photocatalytic inactivation. The results in this study demonstrated the importance of cell membrane in the bacterial defense system against photocatalytic inactivation.
    View less >
    Journal Title
    Catalysis Today
    Volume
    266
    DOI
    https://doi.org/10.1016/j.cattod.2015.09.003
    Subject
    Chemical sciences
    Genetic immunology
    Engineering
    Publication URI
    http://hdl.handle.net/10072/123659
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander