Bell's theorem and the measurement problem: reducing two mysteries to one?

View/ Open
Author(s)
Cavalcanti, Eric G
Griffith University Author(s)
Year published
2016
Metadata
Show full item recordAbstract
In light of a recent reformulation of Bell's theorem from causal principles by Wiseman and the author, I argue that the conflict between quantum theory and relativity brought up by Bell's work can be softened by a revision of our classical notions of causation. I review some recent proposals for a quantum theory of causation that make great strides towards that end, but highlight a property that is shared by all those theories that would not have satisfied Bell's realist inclinations. They require (implicitly or explicitly) agent-centric notions such as "controllables" and "uncontrollables", or "observed" and "unobserved". ...
View more >In light of a recent reformulation of Bell's theorem from causal principles by Wiseman and the author, I argue that the conflict between quantum theory and relativity brought up by Bell's work can be softened by a revision of our classical notions of causation. I review some recent proposals for a quantum theory of causation that make great strides towards that end, but highlight a property that is shared by all those theories that would not have satisfied Bell's realist inclinations. They require (implicitly or explicitly) agent-centric notions such as "controllables" and "uncontrollables", or "observed" and "unobserved". Thus they relieve the tensions around Bell's theorem by highlighting an issue more often associated with another deep conceptual issue in quantum theory: the measurement problem. Rather than rejecting those terms, however, I argue that we should understand why they seem to be, at least at face-value, needed in order to reach compatibility between quantum theory and relativity. This seems to suggest that causation, and thus causal structure, are emergent phenomena, and lends support to the idea that a resolution of the conflict between quantum theory and relativity necessitates a solution to the measurement problem.
View less >
View more >In light of a recent reformulation of Bell's theorem from causal principles by Wiseman and the author, I argue that the conflict between quantum theory and relativity brought up by Bell's work can be softened by a revision of our classical notions of causation. I review some recent proposals for a quantum theory of causation that make great strides towards that end, but highlight a property that is shared by all those theories that would not have satisfied Bell's realist inclinations. They require (implicitly or explicitly) agent-centric notions such as "controllables" and "uncontrollables", or "observed" and "unobserved". Thus they relieve the tensions around Bell's theorem by highlighting an issue more often associated with another deep conceptual issue in quantum theory: the measurement problem. Rather than rejecting those terms, however, I argue that we should understand why they seem to be, at least at face-value, needed in order to reach compatibility between quantum theory and relativity. This seems to suggest that causation, and thus causal structure, are emergent phenomena, and lends support to the idea that a resolution of the conflict between quantum theory and relativity necessitates a solution to the measurement problem.
View less >
Journal Title
Journal of Physics: Conference Series
Volume
701
Copyright Statement
© 2015 Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Subject
Physical Sciences not elsewhere classified
Atomic, Molecular, Nuclear, Particle and Plasma Physics
Condensed Matter Physics
Other Physical Sciences