Training feedforward neural networks using multi-verse optimizer for binary classification problems
Author(s)
Faris, Hossam
Aljarah, Ibrahim
Mirjalili, Seyedali
Griffith University Author(s)
Year published
2016
Metadata
Show full item recordAbstract
This paper employs the recently proposed nature-inspired algorithm called Multi-Verse Optimizer (MVO) for training the Multi-layer Perceptron (MLP) neural network. The new training approach is benchmarked and evaluated using nine different bio-medical datasets selected from the UCI machine learning repository. The results are compared to five classical and recent evolutionary metaheuristic algorithms: Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Differential Evolution (DE), FireFly (FF) Algorithm and Cuckoo Search (CS). In addition, the results are compared with two well-regarded conventional gradient-based ...
View more >This paper employs the recently proposed nature-inspired algorithm called Multi-Verse Optimizer (MVO) for training the Multi-layer Perceptron (MLP) neural network. The new training approach is benchmarked and evaluated using nine different bio-medical datasets selected from the UCI machine learning repository. The results are compared to five classical and recent evolutionary metaheuristic algorithms: Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Differential Evolution (DE), FireFly (FF) Algorithm and Cuckoo Search (CS). In addition, the results are compared with two well-regarded conventional gradient-based training methods: the conventional Back-Propagation (BP) and the Levenberg-Marquardt (LM) algorithms. The comparative study demonstrates that MVO is very competitive and outperforms other training algorithms in the majority of datasets in terms of improved local optima avoidance and convergence speed.
View less >
View more >This paper employs the recently proposed nature-inspired algorithm called Multi-Verse Optimizer (MVO) for training the Multi-layer Perceptron (MLP) neural network. The new training approach is benchmarked and evaluated using nine different bio-medical datasets selected from the UCI machine learning repository. The results are compared to five classical and recent evolutionary metaheuristic algorithms: Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Differential Evolution (DE), FireFly (FF) Algorithm and Cuckoo Search (CS). In addition, the results are compared with two well-regarded conventional gradient-based training methods: the conventional Back-Propagation (BP) and the Levenberg-Marquardt (LM) algorithms. The comparative study demonstrates that MVO is very competitive and outperforms other training algorithms in the majority of datasets in terms of improved local optima avoidance and convergence speed.
View less >
Journal Title
Applied Intelligence
Volume
45
Issue
2
Subject
Artificial intelligence