• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • In Vivo Evaluation of Active and Passive Physiological Control Systems for Rotary Left and Right Ventricular Assist Devices

    Thumbnail
    View/Open
    GregoryPUB1405.pdf (475.0Kb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Gregory, Shaun D
    Stevens, Michael C
    Pauls, Jo P
    Schummy, Emma
    Diab, Sara
    Thomson, Bruce
    Anderson, Ben
    Tansley, Geoff
    Salamonsen, Robert
    Fraser, John F
    Timms, Daniel
    Griffith University Author(s)
    Tansley, Geoff
    Year published
    2016
    Metadata
    Show full item record
    Abstract
    Preventing ventricular suction and venous congestion through balancing flow rates and circulatory volumes with dual rotary ventricular assist devices (VADs) configured for biventricular support is clinically challenging due to their low preload and high afterload sensitivities relative to the natural heart. This study presents the in vivo evaluation of several physiological control systems, which aim to prevent ventricular suction and venous congestion. The control systems included a sensor-based, master/slave (MS) controller that altered left and right VAD speed based on pressure and flow; a sensor-less compliant inflow ...
    View more >
    Preventing ventricular suction and venous congestion through balancing flow rates and circulatory volumes with dual rotary ventricular assist devices (VADs) configured for biventricular support is clinically challenging due to their low preload and high afterload sensitivities relative to the natural heart. This study presents the in vivo evaluation of several physiological control systems, which aim to prevent ventricular suction and venous congestion. The control systems included a sensor-based, master/slave (MS) controller that altered left and right VAD speed based on pressure and flow; a sensor-less compliant inflow cannula (IC), which altered inlet resistance and, therefore, pump flow based on preload; a sensor-less compliant outflow cannula (OC) on the right VAD, which altered outlet resistance and thus pump flow based on afterload; and a combined controller, which incorporated the MS controller, compliant IC, and compliant OC. Each control system was evaluated in vivo under step increases in systemic (SVR ∼1400–2400 dyne/s/cm5) and pulmonary (PVR ∼200–1000 dyne/s/cm5) vascular resistances in four sheep supported by dual rotary VADs in a biventricular assist configuration. Constant speed support was also evaluated for comparison and resulted in suction events during all resistance increases and pulmonary congestion during SVR increases. The MS controller reduced suction events and prevented congestion through an initial sharp reduction in pump flow followed by a gradual return to baseline (5.0 L/min). The compliant IC prevented suction events; however, reduced pump flows and pulmonary congestion were noted during the SVR increase. The compliant OC maintained pump flow close to baseline (5.0 L/min) and prevented suction and congestion during PVR increases. The combined controller responded similarly to the MS controller to prevent suction and congestion events in all cases while providing a backup system in the event of single controller failure.
    View less >
    Journal Title
    Artificial Organs
    Volume
    40
    Issue
    9
    DOI
    https://doi.org/10.1111/aor.12654
    Copyright Statement
    © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc. This is the peer reviewed version of the following article: In Vivo Evaluation of Active and Passive Physiological Control Systems for Rotary Left and Right Ventricular Assist Devices, Artificial Organs, Volume 40, Issue 9, September 2016, Pages 894–903 which has been published in final form at https://doi.org/10.1111/aor.12654. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving (http://olabout.wiley.com/WileyCDA/Section/id-828039.html)
    Subject
    Biomedical engineering
    Biomedical engineering not elsewhere classified
    Clinical sciences
    Publication URI
    http://hdl.handle.net/10072/123755
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander