• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Superparamagnetic Gadolinium Ferrite Nanoparticles with Controllable Curie Temperature: Cancer Theranostics for MR-Imaging-Guided Magneto-Chemotherapy

    Author(s)
    Thorat, Nanasaheb D
    Bohara, Raghvendra A
    Tofail, Syed AM
    Alothman, Zeid Abdullah
    Shiddiky, Muhammad JA
    Hossain, Md Shahriar A
    Yamauchi, Yusuke
    Wu, Kevin C-W
    Griffith University Author(s)
    Shiddiky, Muhammad J.
    Year published
    2016
    Metadata
    Show full item record
    Abstract
    A facile polyol approach for preparing low-Curie-temperature (TC) gadolinium-doped iron oxide nanoparticles (GdIO NPs) for targeted magnetic hyperthermia and chemotherapy coupled with T1–T2 dual-model magnetic resonance (MR) imaging (where T1 and T2 are the longitudinal and transverse relaxation times, respectively) is reported. A small amount of Gd doping decreases the TC of iron oxide down to about 400 K. In the presence of ethanolamine, controlled polyol synthesis leads to the formation of low-TC, highly magnetic (52.87 emu g–1), and size-controlled (ca. 10 nm) GdIO NPs. A further conjugation with folate and a chemotherapeutic ...
    View more >
    A facile polyol approach for preparing low-Curie-temperature (TC) gadolinium-doped iron oxide nanoparticles (GdIO NPs) for targeted magnetic hyperthermia and chemotherapy coupled with T1–T2 dual-model magnetic resonance (MR) imaging (where T1 and T2 are the longitudinal and transverse relaxation times, respectively) is reported. A small amount of Gd doping decreases the TC of iron oxide down to about 400 K. In the presence of ethanolamine, controlled polyol synthesis leads to the formation of low-TC, highly magnetic (52.87 emu g–1), and size-controlled (ca. 10 nm) GdIO NPs. A further conjugation with folate and a chemotherapeutic drug has been developed, and the whole system is used for in vitro magneto-chemotherapy (magnetic hyperthermia and chemotherapy) for cancer treatment. The synthesized GdIO NPs are stable colloids that are hemocompatible and cytocompatible over a wide concentration range and have a high affinity towards cancer cells. The release of a chemotherapeutic drug from the GdIO NPs significantly affects cancer cell viability, and the T1–T2 dual-model magnetic resonance enhances bioimaging in a breast cancer cell model. We suggest that the chemotherapeutic-drug-conjugated GdIO NPs have great potential for cell targeting and magnetic resonance imaging in cancer magneto-chemotherapy.
    View less >
    Journal Title
    European Journal of Inorganic Chemistry
    DOI
    https://doi.org/10.1002/ejic.201600706
    Subject
    Inorganic chemistry
    Inorganic chemistry not elsewhere classified
    Other chemical sciences
    Publication URI
    http://hdl.handle.net/10072/123894
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander