Novel identification and characterisation of Transient receptor potential melastatin 3 ion channels on Natural Killer cells and B lymphocytes: effects on cell signalling in Chronic fatigue syndrome/Myalgic encephalomyelitis patients

View/ Open
File version
Version of Record (VoR)
Author(s)
Nguyen, T
Staines, D
Nilius, B
Smith, P
Marshall-Gradisnik, S
Year published
2016
Metadata
Show full item recordAbstract
Background:
Transient receptor potential melastatin 3 (TRPM3) cation channels are ubiquitously expressed by multiple cells and have an important regulatory role in calcium-dependent cell signalling to help maintain cellular homeostasis. TRPM3 protein expression has yet to be determined on Natural Killer (NK) cells and B lymphocytes. Multiple single nucleotide polymorphisms have been reported in TRPM3 genes from isolated peripheral blood mononuclear cells, NK and B cells in Chronic fatigue syndrome/Myalgic encephalomyelitis (CFS/ME) patients and have been proposed to correlate with illness presentation. The object of the ...
View more >Background: Transient receptor potential melastatin 3 (TRPM3) cation channels are ubiquitously expressed by multiple cells and have an important regulatory role in calcium-dependent cell signalling to help maintain cellular homeostasis. TRPM3 protein expression has yet to be determined on Natural Killer (NK) cells and B lymphocytes. Multiple single nucleotide polymorphisms have been reported in TRPM3 genes from isolated peripheral blood mononuclear cells, NK and B cells in Chronic fatigue syndrome/Myalgic encephalomyelitis (CFS/ME) patients and have been proposed to correlate with illness presentation. The object of the study was to assess TRPM3 surface expression on NK and B lymphocytes from healthy controls, followed by a comparative investigation examining TRPM3 surface expression, and cytoplasmic and mitochondrial calcium influx in CD19+ B cells, CD56bright and CD56dim cell populations from CFS/ME patients. Results: TRPM3 cell surface expression was identified for NK and B lymphocytes in healthy controls (CD56bright TRPM3 35.72 % ± 7.37; CD56dim 5.74 % ± 2.00; B lymphocytes 2.05 % ± 0.19, respectively). There was a significant reduction of TRPM3 surface expression on CD19+ B cells (1.56 ± 0.191) and CD56bright NK cells (17.37 % ± 5.34) in CFS/ME compared with healthy controls. Anti-CD21 and anti-IgM conjugated biotin was cross-linked with streptavidin,and subsequently treatment with thapsigargin. This showed a significant reduction in cytoplasmic calcium ion concentration in CD19+ B lymphocytes. CD56bright NK cells also had a significant decrease in cytoplasmic calcium in the presence of 2-APB and thapsigargin in CFS/ME patients. Conclusions: The results from this preliminary investigation identify, for the first time, TRPM3 surface expression on both NK and B lymphocytes in healthy controls. We also report for the first time, significant reduction in TRPM3 cell surface expression in NK and B lymphocytes, as well as decreased intracellular calcium within specific conditions in CFS/ME patients. This warrants further examination of these pathways to elucidate whether TRPM3 and impaired calcium mobilisation has a role in CFS/ME.
View less >
View more >Background: Transient receptor potential melastatin 3 (TRPM3) cation channels are ubiquitously expressed by multiple cells and have an important regulatory role in calcium-dependent cell signalling to help maintain cellular homeostasis. TRPM3 protein expression has yet to be determined on Natural Killer (NK) cells and B lymphocytes. Multiple single nucleotide polymorphisms have been reported in TRPM3 genes from isolated peripheral blood mononuclear cells, NK and B cells in Chronic fatigue syndrome/Myalgic encephalomyelitis (CFS/ME) patients and have been proposed to correlate with illness presentation. The object of the study was to assess TRPM3 surface expression on NK and B lymphocytes from healthy controls, followed by a comparative investigation examining TRPM3 surface expression, and cytoplasmic and mitochondrial calcium influx in CD19+ B cells, CD56bright and CD56dim cell populations from CFS/ME patients. Results: TRPM3 cell surface expression was identified for NK and B lymphocytes in healthy controls (CD56bright TRPM3 35.72 % ± 7.37; CD56dim 5.74 % ± 2.00; B lymphocytes 2.05 % ± 0.19, respectively). There was a significant reduction of TRPM3 surface expression on CD19+ B cells (1.56 ± 0.191) and CD56bright NK cells (17.37 % ± 5.34) in CFS/ME compared with healthy controls. Anti-CD21 and anti-IgM conjugated biotin was cross-linked with streptavidin,and subsequently treatment with thapsigargin. This showed a significant reduction in cytoplasmic calcium ion concentration in CD19+ B lymphocytes. CD56bright NK cells also had a significant decrease in cytoplasmic calcium in the presence of 2-APB and thapsigargin in CFS/ME patients. Conclusions: The results from this preliminary investigation identify, for the first time, TRPM3 surface expression on both NK and B lymphocytes in healthy controls. We also report for the first time, significant reduction in TRPM3 cell surface expression in NK and B lymphocytes, as well as decreased intracellular calcium within specific conditions in CFS/ME patients. This warrants further examination of these pathways to elucidate whether TRPM3 and impaired calcium mobilisation has a role in CFS/ME.
View less >
Journal Title
Biological Research
Volume
49
Copyright Statement
© The Author(s) 2016. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/ zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Subject
Biological sciences
Other biological sciences not elsewhere classified