Concentrations of levonorgestrel and ethinylestradiol in wastewater effluents: Is the progestin also cause for concern?
Author(s)
King, Olivia C
van de Merwe, Jason P
McDonald, James A
Leusch, Frederic DL
Year published
2016
Metadata
Show full item recordAbstract
Synthetic hormones have been widely reported in treated sewage effluents, and consequently receiving aquatic environments. Ethinylestradiol (EE2) is a potent synthetic estrogen commonly used in conjunction with levonorgestrel in oral contraceptive pills. Both EE2 and levonorgestrel have been identified in the aquatic environment, but although there is a significant amount of literature on EE2, there is much less information on levonorgestrel. Using Australian prescription data as well as excretion and predicted wastewater removal rates, the concentrations of EE2 and levonorgestrel in Australian wastewater were calculated at ...
View more >Synthetic hormones have been widely reported in treated sewage effluents, and consequently receiving aquatic environments. Ethinylestradiol (EE2) is a potent synthetic estrogen commonly used in conjunction with levonorgestrel in oral contraceptive pills. Both EE2 and levonorgestrel have been identified in the aquatic environment, but although there is a significant amount of literature on EE2, there is much less information on levonorgestrel. Using Australian prescription data as well as excretion and predicted wastewater removal rates, the concentrations of EE2 and levonorgestrel in Australian wastewater were calculated at 0.1 ng/L to 0.5 ng/L and 0.2 ng/L to 0.6 ng/L, respectively. Both compounds were analyzed in treated wastewater and surface water grab samples from 3 Southeast Queensland, Australia sites. The predicted no-effect concentration (PNEC) for EE2 of 0.1 ng/L was exceeded at most sites, with EE2 concentrations up to 2 ng/L in treated effluent, albeit quickly diluted to 0.1 ng/L to 0.2 ng/L in the receiving environment. A provisional PNEC for levonorgestrel of 0.1 ng/L derived in the present study was slightly lower than predicted effluent concentrations of 0.2 ng/L to 0.6 ng/L, indicating a potential risk of endocrine-related effects in exposed aquatic species. The detection limit for levonorgestrel in the present study was 2.5 ng/L, and all samples were below detection limit. The present study's results suggest that improvements in analytical capabilities for levonorgestrel are warranted to more accurately quantify the risk of this compound in the receiving environment.
View less >
View more >Synthetic hormones have been widely reported in treated sewage effluents, and consequently receiving aquatic environments. Ethinylestradiol (EE2) is a potent synthetic estrogen commonly used in conjunction with levonorgestrel in oral contraceptive pills. Both EE2 and levonorgestrel have been identified in the aquatic environment, but although there is a significant amount of literature on EE2, there is much less information on levonorgestrel. Using Australian prescription data as well as excretion and predicted wastewater removal rates, the concentrations of EE2 and levonorgestrel in Australian wastewater were calculated at 0.1 ng/L to 0.5 ng/L and 0.2 ng/L to 0.6 ng/L, respectively. Both compounds were analyzed in treated wastewater and surface water grab samples from 3 Southeast Queensland, Australia sites. The predicted no-effect concentration (PNEC) for EE2 of 0.1 ng/L was exceeded at most sites, with EE2 concentrations up to 2 ng/L in treated effluent, albeit quickly diluted to 0.1 ng/L to 0.2 ng/L in the receiving environment. A provisional PNEC for levonorgestrel of 0.1 ng/L derived in the present study was slightly lower than predicted effluent concentrations of 0.2 ng/L to 0.6 ng/L, indicating a potential risk of endocrine-related effects in exposed aquatic species. The detection limit for levonorgestrel in the present study was 2.5 ng/L, and all samples were below detection limit. The present study's results suggest that improvements in analytical capabilities for levonorgestrel are warranted to more accurately quantify the risk of this compound in the receiving environment.
View less >
Journal Title
Environmental Toxicology and Chemistry
Volume
35
Issue
6
Subject
Chemical sciences
Environmental sciences
Environmental management not elsewhere classified
Biological sciences