• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • LRFragLib: an effective algorithm to identify fragments for de novo protein structure prediction

    Author(s)
    Wang, Tong
    Yang, Yuedong
    Zhou, Yaoqi
    Gong, Haipeng
    Griffith University Author(s)
    Zhou, Yaoqi
    Yang, Yuedong
    Year published
    2017
    Metadata
    Show full item record
    Abstract
    Motivation: The quality of fragment library determines the efficiency of fragment assembly, an approach that is widely used in most de novo protein-structure prediction algorithms. Conventional fragment libraries are constructed mainly based on the identities of amino acids, sometimes facilitated by predicted information including dihedral angles and secondary structures. However, it remains challenging to identify near-native fragment structures with low sequence homology. Results: We introduce a novel fragment-library-construction algorithm, LRFragLib, to improve the detection of near-native low-homology fragments of 7–10 ...
    View more >
    Motivation: The quality of fragment library determines the efficiency of fragment assembly, an approach that is widely used in most de novo protein-structure prediction algorithms. Conventional fragment libraries are constructed mainly based on the identities of amino acids, sometimes facilitated by predicted information including dihedral angles and secondary structures. However, it remains challenging to identify near-native fragment structures with low sequence homology. Results: We introduce a novel fragment-library-construction algorithm, LRFragLib, to improve the detection of near-native low-homology fragments of 7–10 residues, using a multi-stage, flexible selection protocol. Based on logistic regression scoring models, LRFragLib outperforms existing techniques by achieving a significantly higher precision and a comparable coverage on recent CASP protein sets in sampling near-native structures. The method also has a comparable computational efficiency to the fastest existing techniques with substantially reduced memory usage.
    View less >
    Journal Title
    Bioinformatics
    DOI
    https://doi.org/10.1093/bioinformatics/btw668
    Note
    This publication has been entered into Griffith Research Online as an Advanced Online Version.
    Subject
    Mathematical sciences
    Biological sciences
    Bioinformatics and computational biology
    Publication URI
    http://hdl.handle.net/10072/124074
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander