• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • A Novel Online Bayes Classifier

    Author(s)
    Thi, Thu Thuy Nguyen
    Tien, Thanh Nguyen
    Xuan, Cuong Pham
    Liew, Alan Wee-Chung
    Hu, Yongjian
    Liang, Tiancai
    Li, Chang-Tsun
    Griffith University Author(s)
    Liew, Alan Wee-Chung
    Year published
    2016
    Metadata
    Show full item record
    Abstract
    We present VIGO, a novel online Bayesian classifier for both binary or multiclass problems. In our model, variational inference for multivariate Gaussian distribution technique is exploited to approximate the class conditional probability density functions of data in an online manner. Besides being a conservative learner with a low number of updates compared with many other popular algorithms, VIGO algorithm can be updated in a minibatch of an arbitrary size which makes it robust with noise data. Experiments over a large number of UCI datasets demonstrate the advantage of VIGO with many state-of-the-art methods presented in ...
    View more >
    We present VIGO, a novel online Bayesian classifier for both binary or multiclass problems. In our model, variational inference for multivariate Gaussian distribution technique is exploited to approximate the class conditional probability density functions of data in an online manner. Besides being a conservative learner with a low number of updates compared with many other popular algorithms, VIGO algorithm can be updated in a minibatch of an arbitrary size which makes it robust with noise data. Experiments over a large number of UCI datasets demonstrate the advantage of VIGO with many state-of-the-art methods presented in LIBOL - a prevalent library for online learning algorithms.
    View less >
    Conference Title
    2016 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA)
    DOI
    https://doi.org/10.1109/DICTA.2016.7796993
    Subject
    Pattern recognition
    Data mining and knowledge discovery
    Publication URI
    http://hdl.handle.net/10072/124157
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander