• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Online-Offline Extreme Learning Machine with Concept Drift Tracking for Time Series Data

    Author(s)
    Guo, Lihua
    Liew, Alan Wee-Chung
    Griffith University Author(s)
    Liew, Alan Wee-Chung
    Year published
    2016
    Metadata
    Show full item record
    Abstract
    Data stream mining has been receiving increased attention due to its presence in a wide range of applications, such as sensor networks, banking, and telecommunication. One of the most important challenges during learning from data streams is reacting to concept drift, i.e. unforeseen changes of the stream's underlying data distribution. Traditional methods always used online learning to handle the concept drift problem. However, online learning requires high time cost during online training. To overcome this shortcoming, this paper proposes a Kalman filtering approach, which can provide robust concept drift detection, to ...
    View more >
    Data stream mining has been receiving increased attention due to its presence in a wide range of applications, such as sensor networks, banking, and telecommunication. One of the most important challenges during learning from data streams is reacting to concept drift, i.e. unforeseen changes of the stream's underlying data distribution. Traditional methods always used online learning to handle the concept drift problem. However, online learning requires high time cost during online training. To overcome this shortcoming, this paper proposes a Kalman filtering approach, which can provide robust concept drift detection, to track concept drift. Once concept drift happens, the online extreme learning machine is applied to update the tracking model, whereas the offline extreme learning machine is used when no concept drift occurs. Based on this idea, we propose a fusion framework to combine online and offline extreme learning machine to efficiently track the data stream. The experiment results indicate the superior performance of our method.
    View less >
    Conference Title
    2016 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA)
    DOI
    https://doi.org/10.1109/DICTA.2016.7797069
    Subject
    Pattern recognition
    Data mining and knowledge discovery
    Publication URI
    http://hdl.handle.net/10072/124159
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander