• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • DDIG-in: Detecting disease-causing genetic variations due to frameshifting indels and nonsense mutations employing sequence and structural properties at nucleotide and protein levels

    Author(s)
    Folkman, Lukas
    Yang, Yuedong
    Li, Zhixiu
    Stantic, Bela
    Sattar, Abdul
    Mort, Matthew
    Cooper, David N
    Liu, Yunlong
    Zhou, Yaoqi
    Griffith University Author(s)
    Stantic, Bela
    Sattar, Abdul
    Folkman, Lukas
    Year published
    2015
    Metadata
    Show full item record
    Abstract
    Motivation: Frameshifting (FS) indels and nonsense (NS) variants disrupt the protein-coding sequence downstream of the mutation site by changing the reading frame or introducing a premature termination codon, respectively. Despite such drastic changes to the protein sequence, FS indels and NS variants have been discovered in healthy individuals. How to discriminate disease-causing from neutral FS indels and NS variants is an understudied problem. Results: We have built a machine learning method called DDIG-in (FS) based on real human genetic variations from the Human Gene Mutation Database (inherited disease-causing) and ...
    View more >
    Motivation: Frameshifting (FS) indels and nonsense (NS) variants disrupt the protein-coding sequence downstream of the mutation site by changing the reading frame or introducing a premature termination codon, respectively. Despite such drastic changes to the protein sequence, FS indels and NS variants have been discovered in healthy individuals. How to discriminate disease-causing from neutral FS indels and NS variants is an understudied problem. Results: We have built a machine learning method called DDIG-in (FS) based on real human genetic variations from the Human Gene Mutation Database (inherited disease-causing) and the 1000 Genomes Project (GP) (putatively neutral). The method incorporates both sequence and predicted structural features and yields a robust performance by 10-fold cross-validation and independent tests on both FS indels and NS variants. We showed that human-derived NS variants and FS indels derived from animal orthologs can be effectively employed for independent testing of our method trained on human-derived FS indels. DDIG-in (FS) achieves a Matthews correlation coefficient (MCC) of 0.59, a sensitivity of 86%, and a specificity of 72% for FS indels. Application of DDIG-in (FS) to NS variants yields essentially the same performance (MCC of 0.43) as a method that was specifically trained for NS variants. DDIG-in (FS) was shown to make a significant improvement over existing techniques.
    View less >
    Journal Title
    Bioinformatics
    Volume
    31
    Issue
    10
    DOI
    https://doi.org/10.1093/bioinformatics/btu862
    Subject
    Mathematical sciences
    Biological sciences
    Information and computing sciences
    Publication URI
    http://hdl.handle.net/10072/125029
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander