• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Fertiliser-induced nitrous oxide emissions from vegetable production in the world and the regulating factors: A review

    Author(s)
    Rashti, Mehran Rezaei
    Wang, Weijin
    Moody, Phil
    Chen, Chengrong
    Ghadiri, Hossein
    Griffith University Author(s)
    Chen, Chengrong
    Rezaei Rashti, Mehran
    Year published
    2015
    Metadata
    Show full item record
    Abstract
    The emission of nitrous oxide (N2O) from vegetable fields contributes to the global greenhouse gases budget. However, reliable estimation of N2O emissions from vegetable production in the word has been lack. Vegetable cropping systems are characterised with high N application rates, irrigation, intensive production and multiple planting-harvest cycles during the year. Improved understanding of the key factors controlling N2O production is critical for developing effective mitigation strategies for vegetable cropping systems under different climate, soil type and management practices. Based on a comprehensive literature review ...
    View more >
    The emission of nitrous oxide (N2O) from vegetable fields contributes to the global greenhouse gases budget. However, reliable estimation of N2O emissions from vegetable production in the word has been lack. Vegetable cropping systems are characterised with high N application rates, irrigation, intensive production and multiple planting-harvest cycles during the year. Improved understanding of the key factors controlling N2O production is critical for developing effective mitigation strategies for vegetable cropping systems under different climate, soil type and management practices. Based on a comprehensive literature review and data analysis, we estimated the global N2O emission from vegetable production using seasonal fertiliser-induced emission factors (EFs) and examined the relationship of the seasonal emissions and EFs to possible controlling factors. The global average seasonal EF for vegetable fields is around 0.94% of applied N fertiliser, which is very similar to the Intergovernmental Panel on Climate Change (IPCC) annual emission factor of 1.0% for all cropping systems. The total N2O emission from global vegetable production is estimated to be 9.5 × 107 kg N2O–N yr−1, accounting for 9.0% of the total N2O emissions from synthetic fertilisers. Stepwise multiple regression analysis on the relationships of soil properties, climatic factors and N application rates to seasonal N2O emissions and N2O EFs showed that N fertiliser application rate is the main regulator of seasonal N2O emission from vegetable fields but the seasonal EFs are negatively related to soil organic carbon (SOC) content. In fields receiving ≥250 kg ha−1 N fertiliser, 67% (n = 23, P ≤ 0.01) of the variation in seasonal emissions can be explained by the combined effects of N application rate, mean water-filled pore space (WFPS) and air temperature, while 59% (n = 23, P ≤ 0.01) of the variation in seasonal EFs relates to temperature, mean WFPS and soil pH. The result also shows that in vegetable fields with mean seasonal air temperature higher than 14 °C, increases in SOC decrease the seasonal EF and total N2O emissions from fertiliser N.
    View less >
    Journal Title
    Atmospheric Environment
    Volume
    112
    DOI
    https://doi.org/10.1016/j.atmosenv.2015.04.036
    Subject
    Statistics
    Atmospheric sciences
    Environmental engineering
    Environmental engineering not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/125156
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander