dc.contributor.author | Chhogyal, Kinzang | |
dc.contributor.author | Nayak, Abhaya | |
dc.contributor.author | Zhuang, Zhiqiang | |
dc.contributor.author | Sattar, Abdul | |
dc.contributor.editor | Yang, Q | |
dc.contributor.editor | Wooldridge, M | |
dc.date.accessioned | 2017-08-28T00:58:21Z | |
dc.date.available | 2017-08-28T00:58:21Z | |
dc.date.issued | 2015 | |
dc.identifier.issn | 1045-0823 | |
dc.identifier.uri | http://hdl.handle.net/10072/125327 | |
dc.description.abstract | When a belief state is represented as a probability function P, the resulting belief state of the contraction of a sentence (belief) from the original belief state P can be given by the probabilistic version of the Harper Identity. Specifically, the result of contracting P by a sentence h is taken to be the mixture of two states: the original state P, and the resultant state P*~h of revising P by the negation of h. What proportion of P and P*~h should be used in this mixture remains an open issue and is largely ignored in literature. In this paper, we first classify different belief states by their stability, and then exploit the quantitative nature of probabilities and combine it with the basic ideas of argumentation theory to determine the mixture proportions. We, therefore, propose a novel approach to probabilistic belief contraction using argumentation. | |
dc.description.peerreviewed | Yes | |
dc.language | English | |
dc.language.iso | eng | |
dc.publisher | Association for the Advancement of Artificial Intelligence (AAAI) | |
dc.publisher.uri | https://www.ijcai.org/Abstract/15/404 | |
dc.relation.ispartofpagefrom | 2854 | |
dc.relation.ispartofpageto | 2860 | |
dc.relation.ispartofjournal | Proceedings of the International Joint Conference on Artificial Intelligence | |
dc.relation.ispartofvolume | 2015 | |
dc.subject.fieldofresearch | Artificial intelligence not elsewhere classified | |
dc.subject.fieldofresearchcode | 460299 | |
dc.title | Probabilistic Belief Contraction Using Argumentation | |
dc.type | Journal article | |
dc.type.description | C1 - Articles | |
dc.type.code | C - Journal Articles | |
dc.description.version | Version of Record (VoR) | |
gro.faculty | Griffith Sciences, School of Information and Communication Technology | |
gro.rights.copyright | © 2015 International Joint Conference on Artificial Intelligence. The attached file is reproduced here in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version. | |
gro.hasfulltext | Full Text | |
gro.griffith.author | Sattar, Abdul | |