• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Distal Dendrite Feedback in Hierarchical Temporal Memory

    Author
    Kneller, Adam
    Thornton, John
    Year published
    2015
    Metadata
    Show full item record
    Abstract
    Recent theories have proposed that the unifying principle of brain function is the minimisation of variational free energy and that this is best achieved using a hierarchical predictive coding (HPC) framework. Hierarchical Temporal Memory (HTM) is a model of neocortical function that fits within the free energy framework but does not implement predictive coding. Recent work has attempted to integrate predictive coding and hierarchical message passing into the existing suite of HTM Cortical Learning Algorithms (CLA) producing a PC-CLA hybrid. In this paper we examine for the first time how such hierarchical message passing ...
    View more >
    Recent theories have proposed that the unifying principle of brain function is the minimisation of variational free energy and that this is best achieved using a hierarchical predictive coding (HPC) framework. Hierarchical Temporal Memory (HTM) is a model of neocortical function that fits within the free energy framework but does not implement predictive coding. Recent work has attempted to integrate predictive coding and hierarchical message passing into the existing suite of HTM Cortical Learning Algorithms (CLA) producing a PC-CLA hybrid. In this paper we examine for the first time how such hierarchical message passing can be implemented in a pure HTM framework using distal dendrite structures that are already implemented in the CLA temporal pooler. We show this approach outperforms the more simplistic proximal dendrite structures used in the PC-CLA hybrid and also that the new CLA hierarchy is effective for anomaly detection and image reconstruction problems that are beyond the reach of the existing single-level CLA framework.
    View less >
    Conference Title
    2015 International Joint Conference on Neural Networks (IJCNN)
    DOI
    https://doi.org/10.1109/IJCNN.2015.7280348
    Subject
    Artificial Intelligence and Image Processing not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/125370
    Collection
    • Conference outputs

    Footer

    Social media

    • Facebook
    • Twitter
    • YouTube
    • Instagram
    • Linkedin
    First peoples of Australia
    • Aboriginal
    • Torres Strait Islander

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane
    • Australia