• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Approximating Model-based ABox Revision in DL-Lite: Theory and Practice

    Thumbnail
    View/Open
    QiPUB979.pdf (1.202Mb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Qi, Guilin
    Wang, Zhe
    Wang, Kewen
    Fu, Xuefeng
    Zhuang, Zhiqiang
    Griffith University Author(s)
    Wang, Kewen
    Wang, Zhe
    Year published
    2015
    Metadata
    Show full item record
    Abstract
    Model-based approaches provide a semantically well justified way to revise ontologies. However, in general, model-based revision operators are limited due to lack of efficient algorithms and inexpressibility of the revision results. In this paper, we make both theoretical and practical contribution to efficient computation of model-based revisions in DL-Lite. Specifically, we show that maximal approximations of two well-known model-based revisions for DL-LiteR can be computed using a syntactic algorithm. However, such a coincidence of model-based and syntactic approaches does not hold when role functionality axioms are ...
    View more >
    Model-based approaches provide a semantically well justified way to revise ontologies. However, in general, model-based revision operators are limited due to lack of efficient algorithms and inexpressibility of the revision results. In this paper, we make both theoretical and practical contribution to efficient computation of model-based revisions in DL-Lite. Specifically, we show that maximal approximations of two well-known model-based revisions for DL-LiteR can be computed using a syntactic algorithm. However, such a coincidence of model-based and syntactic approaches does not hold when role functionality axioms are allowed. As a result, we identify conditions that guarantee such a coincidence for DL-LiteFR. Our result shows that both model-based and syntactic revisions can co-exist seamlessly and the advantages of both approaches can be taken in one revision operator. Based on our theoretical results, we develop a graph-based algorithm for the revision operators and thus graph database techniques can be used to compute ontology revisions. Preliminary evaluation results show that the graph-based algorithm can efficiently handle revision of practical ontologies with large data.
    View less >
    Conference Title
    PROCEEDINGS OF THE TWENTY-NINTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE
    Volume
    1
    Publisher URI
    https://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9830
    Copyright Statement
    © 2015 AAAI Press. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the conference's website for access to the definitive, published version.
    Subject
    Artificial intelligence not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/125427
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander