• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Determination of rotational kinematics of the lower leg during sprint running using accelerometers

    Author(s)
    Channells, J
    Purcell, B
    Barrett, R
    James, D
    Griffith University Author(s)
    James, Daniel A.
    Barrett, Rod
    Channells, Justin P.
    Purcell, Brendan
    Year published
    2006
    Metadata
    Show full item record
    Abstract
    Motion analysis systems measure and calculate the position of markers fixed to the body but generally restrict measurement to the laboratory environment. In contrast, inertial measurement devices are small, lightweight and selfcontained and data collection is not restricted to a laboratory. Most research using inertial measurement in human locomotion studies has focused on walking. This paper describes a wireless accelerometer-based method for measuringshank angular velocity during sprint running. The system consists of body-mounted electronics with a wireless connection to a PC programmed with the necessary equations to ...
    View more >
    Motion analysis systems measure and calculate the position of markers fixed to the body but generally restrict measurement to the laboratory environment. In contrast, inertial measurement devices are small, lightweight and selfcontained and data collection is not restricted to a laboratory. Most research using inertial measurement in human locomotion studies has focused on walking. This paper describes a wireless accelerometer-based method for measuringshank angular velocity during sprint running. The system consists of body-mounted electronics with a wireless connection to a PC programmed with the necessary equations to interpret the acceleration data. The hardware incorporates two sets of accelerometers measuring acceleration in each of the three axes. The two 3D accelerometers are fixed to a frame so that their axes are aligned and they are separated by a prescribed distance. By calculating the difference in acceleration between the two 3D sensors, the gravitational component and linear acceleration components are cancelled leaving the rotational acceleration components. An onboard microcontroller digitises the accelerometer signals and the data is transmitted wirelessly to a PC to calculate the angular velocity with minimal latency. Tests were conducted on several subjects running at a constant velocity for several different speeds. The angular rate output from the accelerometer-based system was compared to data obtained from an optical motion analysis system. Validation test results indicate an accurate result was obtained. The design's suitability for acquiring data during elite athlete sprint training is examined and other applications considered. Error reduction strategies will also be discussed.
    View less >
    Conference Title
    BIOMEMS AND NANOTECHNOLOGY II
    Volume
    6036
    Publication URI
    http://hdl.handle.net/10072/13410
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander