• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Innovative techniques for extending the range and node limits in Bluetooth-based wireless sensor networks

    Author(s)
    Fraser, MJ
    James, DA
    Thiel, DV
    Griffith University Author(s)
    Thiel, David V.
    Year published
    2006
    Metadata
    Show full item record
    Abstract
    Wireless networks for sensor applications are required to support an adequate data throughput, range, node density and must consume as little power as possible. The Bluetooth specification has been designed for low power, medium data rate, cable replacement solutions and is therefore useful for wireless sensor networks. However it has a limitation of a maximum number of eight active devices per Bluetooth network (piconet). To be useful in wireless sensor networks a Bluetooth piconet requires a means to communicate to more than the maximum of eight active devices. This paper demonstrates techniques for expanding the usefulness ...
    View more >
    Wireless networks for sensor applications are required to support an adequate data throughput, range, node density and must consume as little power as possible. The Bluetooth specification has been designed for low power, medium data rate, cable replacement solutions and is therefore useful for wireless sensor networks. However it has a limitation of a maximum number of eight active devices per Bluetooth network (piconet). To be useful in wireless sensor networks a Bluetooth piconet requires a means to communicate to more than the maximum of eight active devices. This paper demonstrates techniques for expanding the usefulness of Bluetooth for wireless sensor networks. This has been done by using multiple access points, sharing the active member addresses of the Bluetooth piconet and utilising multiple piconet and scatternet tree structures. A comparison of existing piconet handoff mechanisms has been conducted and these have been evaluated for feasibility with the available hardware's limitations. Scatternet and piconet sharing mechanisms have been developed that allow a Bluetooth structure to support more than eight devices. These structures have been implemented with existing Bluetooth hardware and are compared via theoretical simulation and experimental results. The developed network of multiple Bluetooth access points combined with the developed Bluetooth structures provides several wireless networks suitable for sensor applications.
    View less >
    Conference Title
    MICROELECTRONICS: DESIGN, TECHNOLOGY, AND PACKAGING II
    Volume
    6035
    Publisher URI
    http://spiedl.aip.org/dbt/dbt.jsp?KEY=PSISDG&Volume=6035&Issue=1
    DOI
    https://doi.org/10.1117/12.638397
    Publication URI
    http://hdl.handle.net/10072/13411
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander