• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Can we quantify harm in general practice records? An assessment of precision and power using computer simulation

    Thumbnail
    View/Open
    WetPUB991.pdf (522.7Kb)
    File version
    Version of Record (VoR)
    Author(s)
    de Wet, Carl
    Johnson, Paul
    O'Donnell, Catherine
    Bowie, Paul
    Griffith University Author(s)
    de Wet, Carl
    Year published
    2013
    Metadata
    Show full item record
    Abstract
    Background: Estimating harm rates for specific patient populations and detecting significant changes in them over time are essential if patient safety in general practice is to be improved. Clinical record review (CRR) is arguably the most suitable method for these purposes, but the optimal values and combinations of its parameters (such as numbers of records and practices) remain unknown. Our aims were to: 1. Determine and quantify CRR parameters; 2. Assess the precision and power of feasible CRR scenarios; and 3. Quantify the minimum requirements for adequate precision and acceptable power. Method: We explored precision ...
    View more >
    Background: Estimating harm rates for specific patient populations and detecting significant changes in them over time are essential if patient safety in general practice is to be improved. Clinical record review (CRR) is arguably the most suitable method for these purposes, but the optimal values and combinations of its parameters (such as numbers of records and practices) remain unknown. Our aims were to: 1. Determine and quantify CRR parameters; 2. Assess the precision and power of feasible CRR scenarios; and 3. Quantify the minimum requirements for adequate precision and acceptable power. Method: We explored precision and power of CRR scenarios using Monte Carlo simulation. A range of parameter values were combined in 864 different CRR scenarios, with 1000 random data sets generated for each, and harm rates were estimated and tested for change over time by fitting a generalised linear model with a Poisson response. Results: CRR scenarios with ≥100 detected harm incidents had harm rate estimates with acceptable precision. Harm reductions of 20% or ≥50% were detected with adequate power by those CRR scenarios with at least 100 and 500 harm incidents respectively. The number of detected harm incidents was dependent on the baseline harm rate multiplied by: the period of time reviewed in each record; number of records reviewed per practice; number of practices who reviewed records; and the number of times each record was reviewed. Conclusion: We developed a simple formula to calculate the minimum values of CRR parameters required to achieve adequate precision and acceptable power when monitoring harm rates. Our findings have practical implications for health care decision-makers, leaders and researchers aiming to measure and reduce harm at regional or national level.
    View less >
    Journal Title
    BMC Medical Research Methodology
    Volume
    13
    DOI
    https://doi.org/10.1186/1471-2288-13-39
    Copyright Statement
    © 2013 de Wet et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
    Subject
    Medical and Health Sciences not elsewhere classified
    Public Health and Health Services
    Publication URI
    http://hdl.handle.net/10072/134155
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander