• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • A sensitive and high throughput bacterial luminescence assay for assessing aquatic toxicity - The BLT-Screen

    Author(s)
    van de Merwe, Jason P
    Leusch, Frederic DL
    Griffith University Author(s)
    van de Merwe, Jason P.
    Leusch, Frederic
    Year published
    2015
    Metadata
    Show full item record
    Abstract
    Bioassays using naturally luminescent bacteria are commonly used to assess the toxicity of environmental contaminants, detected by a decrease in luminescence. Typically, this has involved the use of commercial test kits such as Microtox and ToxScreen. These commercial assays, however, have limitations for routine environmental monitoring, including the need for specialized equipment, a low throughput and high on-going costs. There is therefore a need to develop a bacteria bioassay that is sensitive, high-throughput and cost effective. This study presents the development and application of the BLT-Screen (Bacterial Luminescence ...
    View more >
    Bioassays using naturally luminescent bacteria are commonly used to assess the toxicity of environmental contaminants, detected by a decrease in luminescence. Typically, this has involved the use of commercial test kits such as Microtox and ToxScreen. These commercial assays, however, have limitations for routine environmental monitoring, including the need for specialized equipment, a low throughput and high on-going costs. There is therefore a need to develop a bacteria bioassay that is sensitive, high-throughput and cost effective. This study presents the development and application of the BLT-Screen (Bacterial Luminescence Toxicity Screen), a 96-well plate bioassay using Photobacterium leiognathi. During development of the method, the concentration of the phosphate buffer in the experimental medium was adjusted to maximize the sensitivity of the assay, and protocols for analyzing both solid-phase extracts and raw water samples were established. A range of organic compounds and metals were analyzed in the assay, as well as extracts of various water samples, including drinking water, wastewater effluent and river water. The IC50 values of the organic compounds and metals tested in the BLT-Screen were comparable to previously published ToxScreen and Microtox data. In addition, the assay was sensitive enough to detect toxicity in all water types tested, and performed equally well for both solid-phase extracts and raw water samples. The BLT-Screen therefore presents a cost-effective, sensitive and high throughput method for testing the toxicity of environmental contaminants in a range of water types that has widespread applications for research, as well as for routine monitoring and operation of wastewater and drinking water plants.
    View less >
    Journal Title
    Environmental Sciences: Processes and Impacts
    Volume
    17
    Issue
    5
    DOI
    https://doi.org/10.1039/c5em00012b
    Subject
    Chemical sciences
    Bioassays
    Environmental sciences
    Analytical biochemistry
    Biomedical and clinical sciences
    Publication URI
    http://hdl.handle.net/10072/134777
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander